This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101276 Triangle read by rows: T(n,k) is the number of ordered trees having n edges and k branches of length 1. 0
 1, 0, 1, 1, 0, 1, 1, 2, 0, 2, 2, 2, 6, 0, 4, 3, 8, 6, 16, 0, 9, 6, 14, 30, 16, 45, 0, 21, 11, 36, 54, 106, 45, 126, 0, 51, 22, 74, 168, 196, 360, 126, 357, 0, 127, 43, 173, 372, 706, 675, 1197, 357, 1016, 0, 323, 87, 378, 981, 1636, 2775, 2268, 3913, 1016, 2907, 0, 835, 176 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Row n has n+1 terms (n>=0). Row sums are the Catalan numbers (A000108). Column 0 yields A026418. T(n,n)=A001006(n-1) (n>0) (the Motzkin numbers). LINKS Emeric Deutsch, Ordered trees with prescribed root degrees, node degrees and branch lengths, Discrete Math., 282, 2004, 89-94. J. Riordan, Enumeration of plane trees by branches and endpoints, J. Comb. Theory (A) 19, 1975, 214-222. FORMULA G.f. G=G(t, z) satisfies z(t+z-tz)G^2-(1-z+tz+z^2-tz^2)G+1-z+tz+z^2-tz^2=0. EXAMPLE T(3,1)=2 because we have the tree with three edges hanging from the root and the tree with one edge hanging from the root at the end of which two edges are hanging. MAPLE G := 1/2/(-z^2+t*z^2-t*z)*(-1+z-t*z-z^2+t*z^2+sqrt(1-3*t^2*z^2-8*t*z^3+6*t^2*z^3+6*z^4*t-3*t^2*z^4-2*t*z-z^2-3*z^4+2*z^3-2*z+4*t*z^2)): Gser:=simplify(series(G, z=0, 13)): P:=1: for n from 1 to 11 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 11 do seq(coeff(t*P[n], t^k), k=1..n+1) od; # yields the sequence in triangular form CROSSREFS Cf. A000108, A000106, A026418. Sequence in context: A291308 A207944 A063088 * A103863 A166395 A061199 Adjacent sequences:  A101273 A101274 A101275 * A101277 A101278 A101279 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Dec 20 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 16:36 EDT 2019. Contains 323395 sequences. (Running on oeis4.)