This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101263 Decimal expansion of sqrt(2 - sqrt(3)), edge length of a regular dodecagon with circumradius 1. 8
 5, 1, 7, 6, 3, 8, 0, 9, 0, 2, 0, 5, 0, 4, 1, 5, 2, 4, 6, 9, 7, 7, 9, 7, 6, 7, 5, 2, 4, 8, 0, 9, 6, 6, 5, 6, 6, 9, 8, 1, 3, 7, 8, 0, 2, 6, 3, 9, 8, 6, 1, 0, 2, 7, 6, 2, 8, 0, 0, 6, 4, 1, 4, 6, 3, 0, 1, 1, 3, 9, 4, 9, 4, 9, 7, 6, 0, 3, 9, 9, 3, 8, 4, 4, 7, 3, 5, 9, 4, 9, 3, 8, 8, 4, 9, 9, 3, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS sqrt(2 - sqrt(3)) is the shape of the lesser sqrt(6)-contraction rectangle, as defined at A188739. - Clark Kimberling, Apr 16 2011 This is a constructible number, since 12-gon is a constructible polygon. See A003401 for more details. - Stanislav Sykora, May 02 2016 It is also smaller positive coordinate of (symmetrical) intersection points of x^2 + y^2 = 4 circle and y = 1/x hyperbola. The bigger coordinate is A188887. - Leszek Lezniak, Sep 18 2018 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Eric Weisstein's World of Mathematics, Dodecagon. FORMULA Equals sqrt(A019913). - R. J. Mathar, Apr 20 2009 Equals 2*sin(Pi/12) = 2*cos(Pi*5/12). - Stanislav Sykora, May 02 2016 EXAMPLE 0.517638090205041524697797675248096656698137802639861027628006414630113.... MATHEMATICA r = 6^(1/2); t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]]  (*A101263*) RealDigits[Sqrt[2-Sqrt[3]], 10, 120][[1]] (* Harvey P. Dale, Apr 24 2018 *) PROG (PARI) 2*sin(Pi/12) \\ Stanislav Sykora, May 02 2016 CROSSREFS Cf. A003401, A188887. Sequence in context: A244425 A035109 A301509 * A187561 A088515 A200638 Adjacent sequences:  A101260 A101261 A101262 * A101264 A101265 A101266 KEYWORD cons,nonn AUTHOR Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 25 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 21:36 EST 2019. Contains 319336 sequences. (Running on oeis4.)