login
Triangle, read by rows, where T(n,1) = n^2-n+1 for n>=1 and T(n,k) = (n-k+1)*floor( (T(n,k-1)-1)/(n-k+1) ) for 1<k<=n; related to the Flavius sieve (A000960).
2

%I #9 Jun 23 2020 19:05:23

%S 1,3,2,7,6,5,13,12,10,9,21,20,18,16,15,31,30,28,27,26,25,43,42,40,36,

%T 33,32,31,57,56,54,50,48,45,44,43,73,72,70,66,65,64,63,62,61,91,90,88,

%U 84,78,75,72,69,68,67,111,110,108,104,98,96,95,92,90,88,87,133,132,130,126

%N Triangle, read by rows, where T(n,1) = n^2-n+1 for n>=1 and T(n,k) = (n-k+1)*floor( (T(n,k-1)-1)/(n-k+1) ) for 1<k<=n; related to the Flavius sieve (A000960).

%C A variant of triangle A100452. The main diagonal equals A100287, the first number that is crossed off at stage n in the Flavius sieve (A000960). Row sums are A101105.

%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>

%F T(n, n) = A100287(n).

%e T(4,4) = 9 since we start with T(4,1)=4^2-4+1=13 and then

%e T(4,2)=(4-2+1)*floor((T(4,1)-1)/(4-2+1))=3*floor((13-1)/3)=12,

%e T(4,3)=(4-3+1)*floor((T(4,2)-1)/(4-3+1))=2*floor((12-1)/2)=10,

%e T(4,4)=(4-4+1)*floor((T(4,3)-1)/(4-4+1))=1*floor((10-1)/1)=9.

%e Rows begin:

%e [1],

%e [3,2],

%e [7,6,5],

%e [13,12,10,9],

%e [21,20,18,16,15],

%e [31,30,28,27,26,25],

%e [43,42,40,36,33,32,31],

%e [57,56,54,50,48,45,44,43],

%e [73,72,70,66,65,64,63,62,61],...

%o (PARI) T(n,k)=if(k==1,n^2-n+1,(n-k+1)*floor((T(n,k-1)-1)/(n-k+1)))

%Y Cf. A100452, A100287, A000960, A101105.

%K nonn,tabl

%O 1,2

%A _Paul D. Hanna_, Dec 01 2004