login
A101200
Number of partitions of n with rank 3 (the rank of a partition is the largest part minus the number of parts).
8
0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 3, 6, 7, 10, 11, 17, 18, 26, 30, 40, 47, 63, 72, 94, 111, 140, 165, 209, 244, 304, 359, 440, 519, 634, 743, 901, 1060, 1273, 1494, 1789, 2092, 2491, 2914, 3449, 4026, 4752, 5530, 6502, 7561, 8852, 10272, 11997, 13889, 16171, 18695, 21700, 25041, 29002
OFFSET
1,8
COMMENTS
Column k=3 in the triangle A063995.
REFERENCES
George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
LINKS
EXAMPLE
a(6)=1 because the 11 partitions 6,51,42,411,33,321,3111,222,2211,21111,111111 have ranks 5,3,2,1,1,0,-1,-1,-2,-3,-5, respectively.
MAPLE
with(combinat): for n from 1 to 45 do P:=partition(n): c:=0: for j from 1 to nops(P) do if P[j][nops(P[j])]-nops(P[j])=3 then c:=c+1 else c:=c fi od: a[n]:=c: od: seq(a[n], n=1..45);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 12 2004
EXTENSIONS
More terms, Joerg Arndt, Oct 07 2012
STATUS
approved