The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101139 Indices of primes in sequence defined by A(0) = 71, A(n) = 10*A(n-1) + 31 for n > 0. 1
 0, 3, 5, 6, 9, 15, 21, 30, 1314, 2063, 6149, 8706, 12251, 18609, 21629, 41711, 44807, 45420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers n such that (670*10^n - 31)/9 is prime. Numbers n such that digit 7 followed by n >= 0 occurrences of digit 4 followed by digit 1 is prime. Some of the larger entries may only correspond to probable primes. a(19) > 10^5. - Robert Price, Sep 28 2015 REFERENCES Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467. LINKS Makoto Kamada, Prime numbers of the form 744...441. FORMULA a(n) = A103057(n) - 1. EXAMPLE 74441 is prime, hence 3 is a term. MATHEMATICA Select[Range[0, 100000], PrimeQ[(670*10^# - 31)/9] &] (* Robert Price, Sep 28 2015 *) PROG (PARI) a=71; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+31) (PARI) for(n=0, 1500, if(isprime((670*10^n-31)/9), print1(n, ", "))) (MAGMA) [n: n in [0..1000] | IsPrime((670*10^n-31) div 9)]; // Vincenzo Librandi, Sep 29 2015 CROSSREFS Cf. A000533, A002275, A103057. Sequence in context: A070111 A070117 A176345 * A309140 A102606 A102372 Adjacent sequences:  A101136 A101137 A101138 * A101140 A101141 A101142 KEYWORD nonn,hard,more AUTHOR Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 03 2004 EXTENSIONS More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008 a(13)-a(18) from Kamada data by Ray Chandler, Apr 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 11:48 EDT 2020. Contains 337371 sequences. (Running on oeis4.)