This site is supported by donations to The OEIS Foundation.



Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101053 a(n) = n!*Sum_{k=0..n} Bell(k)/k! (cf. A000110). 6


%S 1,2,6,23,107,587,3725,26952,219756,1998951,20105485,221838905,

%T 2666280457,34689290378,485840964614,7288997427755,116634438986227,

%U 1982868327635663,35692311974248093,678159760252918824,13563246929216611852,284828660383365005643

%N a(n) = n!*Sum_{k=0..n} Bell(k)/k! (cf. A000110).

%C Sequence was originally defined as an infinite sum involving generalized Laguerre polynomials: a(n)= ((-1)^n*n!/exp(1))*Sum_{k>=0} LaguerreL(n,-n-1,k)/k!, n=0,1... . It appears in the problem of normal ordering of functions of boson operators.

%C a(n) is the number of ways to linearly order the elements in a (possibly empty) subset S of {1,2,...,n} and then partition the complement of S. - _Geoffrey Critzer_, Aug 07 2015

%H Robert Israel, <a href="/A101053/b101053.txt">Table of n, a(n) for n = 0..450</a>

%F E.g.f: exp(exp(x)-1)/(1-x).

%p with(combinat): a:=n->add(bell(j)*n!/j!,j=0..n): seq(a(n),n=0..20); # _Zerinvary Lajos_, Mar 19 2007

%t nn = 21; Range[0, nn]! CoefficientList[Series[Exp[(Exp[x]-1)]/(1-x), {x, 0, nn}], x] (* _Geoffrey Critzer_, Aug 07 2015 *)

%o (PARI) egf(s)=my(v=Vec(s),i); while(polcoeff(s,i)==0,i++); i--; vector(i+#v,j,polcoeff(s,j+i)*(j+i)!)

%o egf(exp(exp(x)-1)/(1-x)) \\ _Charles R Greathouse IV_, Aug 07 2015

%o (PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(exp(x)-1)/(1-x) )) \\ _G. C. Greubel_, Mar 31 2019

%o (MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Exp(x)-1)/(1-x) )); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Mar 31 2019

%o (Sage) m = 30; T = taylor(exp(exp(x)-1)/(1-x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, Mar 31 2019

%Y Cf. A000110.

%K nonn

%O 0,2

%A _Karol A. Penson_, Nov 29 2004

%E New definition from _Vladeta Jovovic_, Dec 01 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 23:39 EST 2019. Contains 329784 sequences. (Running on oeis4.)