login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101037 Triangle read by rows: T(n,1) = T(n,n) = n and for 1<k<n: T(n,k) = floor((T(n-1,k-1)+T(n-1,k))/2). 2
1, 2, 2, 3, 2, 3, 4, 2, 2, 4, 5, 3, 2, 3, 5, 6, 4, 2, 2, 4, 6, 7, 5, 3, 2, 3, 5, 7, 8, 6, 4, 2, 2, 4, 6, 8, 9, 7, 5, 3, 2, 3, 5, 7, 9, 10, 8, 6, 4, 2, 2, 4, 6, 8, 10, 11, 9, 7, 5, 3, 2, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2, 2, 4, 6, 8, 10, 12, 13, 11, 9, 7, 5, 3, 2, 3, 5, 7, 9, 11, 13, 14, 12, 10, 8, 6, 4, 2, 2, 4, 6, 8, 10, 12, 14 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For n>1: sum of n-th row = A007590(n+1).

LINKS

Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 141, flattened)

FORMULA

From Robert Israel, Jan 30 2018: (Start)

T(n,k) = n - 2*k + 2 if k < (n+1)/2.

T(n,(n+1)/2) = 2 if n>1 is odd.

T(n,k) = 2*k - n if k > (n+1)/2.

G.f. as triangle: x*y*(x^6*y^3-2*x^5*y^3-2*x^5*y^2+x^4*y^3+3*x^4*y^2+x^4*y-3*x^2*y+1)/((1-x^2*y)*(1-x)^2*(1-x*y)^2)).

(End)

EXAMPLE

Triangle begins:

  1;

  2, 2;

  3, 2, 3;

  4, 2, 2, 4;

  5, 3, 2, 3, 5;

  6, 4, 2, 2, 4, 6;

  7, 5, 3, 2, 3, 5, 7;

  ...

MAPLE

T:= proc(n, k) if k < (n+1)/2 then n-2*k+2 elif k=(n+1)/2 then 2 else 2*k-n fi end proc:

T(1, 1):= 1:

seq(seq(T(n, k), k=1..n), n=1..20); # Robert Israel, Jan 30 2018

MATHEMATICA

T[n_, 1] := n; T[n_, n_] := n; T[n_, k_] := T[n, k] = Which[k < (n + 1)/2, n - 2*k + 2, k == (n + 1)/2, 2, True, 2*k - n];

Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Mar 04 2019 *)

CROSSREFS

Sequence in context: A046773 A175402 A281726 * A002199 A218829 A237715

Adjacent sequences:  A101034 A101035 A101036 * A101038 A101039 A101040

KEYWORD

nonn,tabl

AUTHOR

Reinhard Zumkeller, Nov 27 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 00:56 EDT 2019. Contains 326059 sequences. (Running on oeis4.)