login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101035 Dirichlet inverse of the gcd-sum function (A018804). 4
1, -3, -5, 1, -9, 15, -13, 1, 4, 27, -21, -5, -25, 39, 45, 1, -33, -12, -37, -9, 65, 63, -45, -5, 16, 75, 4, -13, -57, -135, -61, 1, 105, 99, 117, 4, -73, 111, 125, -9, -81, -195, -85, -21, -36, 135, -93, -5, 36, -48, 165, -25, -105, -12, 189, -13, 185, 171, -117, 45, -121, 183, -52, 1, 225, -315, -133, -33, 225, -351, -141, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

G. P. Michon, Multiplicative Functions.

FORMULA

Multiplicative function with a(p)=1-2p and a(p^e)=(p-1)^2 when e>1 [p prime].

Dirichlet g.f. zeta(s)/zeta^2(s-1). - R. J. Mathar, Apr 10 2011

a(n)=Sum{d|n} tau_{-2}(d)*d, where tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 19 2013

EXAMPLE

a(4)=1, a(8)=1, a(16)=1, a(32)=1, etc. because of the multiplicative definition for powers of 2.

MATHEMATICA

DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] := DirichletInverse[f][n] = -1/f[1]*Sum[ f[n/d]*DirichletInverse[f][d], {d, Most[ Divisors[n]]}]; GCDSum[n_] := Sum[ GCD[n, k], {k, 1, n}]; Table[ DirichletInverse[ GCDSum][n], {n, 1, 72}](* Jean-François Alcover, Dec 12 2011 *)

PROG

(Haskell)

a101035 n = product $ zipWith f (a027748_row n) (a124010_row n) where

   f p 1 = 1 - 2 * p

   f p e = (p - 1) ^ 2

-- Reinhard Zumkeller, Jul 16 2012

CROSSREFS

Cf. A018804, A055615, A046692, A023900, A007427, A053822, A053825, A053826.

Cf. A008683.

Sequence in context: A214229 A214728 A112752 * A204029 A026253 A259182

Adjacent sequences:  A101032 A101033 A101034 * A101036 A101037 A101038

KEYWORD

easy,nice,sign,mult

AUTHOR

Gerard P. Michon, Nov 27 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 21:51 EST 2016. Contains 278755 sequences.