The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101012 Indices of primes in sequence defined by A(0) = 91, A(n) = 10*A(n-1) + 51 for n > 0. 1
 2, 3, 4, 5, 7, 15, 33, 40, 51, 88, 104, 321, 634, 939, 943, 1130, 1197, 1742, 1871, 37913, 41655, 90095, 99473 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers n such that (870*10^n - 51)/9 is prime. Numbers n such that digit 9 followed by n >= 0 occurrences of digit 6 followed by digit 1 is prime. Numbers corresponding to terms <= 1130 are certified primes. a(24) > 10^5. - Robert Price, Jan 10 2017 REFERENCES Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467. LINKS Makoto Kamada, Prime numbers of the form 966...661. FORMULA a(n) = A103103(n) - 1. EXAMPLE 96661 is prime, hence 3 is a term. MATHEMATICA Select[Range[0, 100000], PrimeQ[(290*10^# - 17)/3] &] (* Robert Price, Jan 10 2017 *) PROG (PARI) a=91; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+51) (PARI) for(n=0, 1500, if(isprime((870*10^n-51)/9), print1(n, ", "))) CROSSREFS Cf. A000533, A002275, A103103. Sequence in context: A131023 A069514 A249155 * A048659 A065774 A281233 Adjacent sequences:  A101009 A101010 A101011 * A101013 A101014 A101015 KEYWORD nonn,hard,more AUTHOR Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 27 2004 EXTENSIONS More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008 a(20)-a(21) from Kamada data by Ray Chandler, Apr 28 2015 a(22)-a(23) from Robert Price, Jan 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 02:09 EDT 2020. Contains 334758 sequences. (Running on oeis4.)