OFFSET
1,3
COMMENTS
Numbers n such that (840*10^n + 33)/9 is prime.
Numbers n such that digit 9 followed by n >= 0 occurrences of digit 3 followed by digit 7 is prime.
Numbers corresponding to terms <= 1024 are certified primes.
a(30) > 10^5. - Robert Price, Nov 07 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103096(n+1) - 1.
EXAMPLE
9337 is prime, hence 2 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(840*10^# + 33)/9] &] (* Robert Price, Nov 07 2015 *)
PROG
(PARI) a=97; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a-33)
(PARI) for(n=0, 1500, if(isprime((840*10^n+33)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more,less
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 27 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(26)-a(28) from Kamada data by Ray Chandler, Apr 28 2015
a(29) from Robert Price, Nov 07 2015
STATUS
approved