login
If n is a prime power p^m, m >= 1, then n, otherwise 1.
10

%I #36 Dec 31 2021 11:41:34

%S 1,2,3,4,5,1,7,8,9,1,11,1,13,1,1,16,17,1,19,1,1,1,23,1,25,1,27,1,29,1,

%T 31,32,1,1,1,1,37,1,1,1,41,1,43,1,1,1,47,1,49,1,1,1,53,1,1,1,1,1,59,1,

%U 61,1,1,64,1,1,67,1,1,1,71,1,73,1,1,1,1,1,79,1,81,1,83,1,1,1,1,1,89,1,1

%N If n is a prime power p^m, m >= 1, then n, otherwise 1.

%C a(n) is the smallest positive integer such that n divides lcm(a(1), a(2), a(3), ..., a(n)), for all positive integers n. - _Leroy Quet_, May 01 2007

%H G. C. Greubel, <a href="/A100994/b100994.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A014963(n)^A100995(n) = n^A010055(n);

%F a(A000961(n)) = A000961(n).

%F a(n) = 1 + (n-1)*floor(1/A001221(n)) for n > 1. - _Enrique Pérez Herrero_, Sep 24 2011

%t A100994[1]:=1; A100994[n_] := (n-1)*(Floor[1/PrimeNu[n]])+1; Array[A100994,100] (* _Enrique Pérez Herrero_, Sep 24 2011 *)

%t a[n_] := If[PrimePowerQ[n], n, 1];

%t Array[a, 100] (* _Jean-François Alcover_, Mar 26 2020 *)

%o (PARI) a(n) = if (isprimepower(n), n, 1); \\ _Michel Marcus_, Mar 18 2018

%Y Cf. A000961, A001221, A010055, A014963, A100995.

%K nonn

%O 1,2

%A _Reinhard Zumkeller_, Nov 26 2004

%E Definition edited to remove ambiguity by _Daniel Forgues_, Aug 18 2009