login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100980 Number of totally ramified extensions over Q_3 with degree n in the algebraic closure of Q_3. 8

%I

%S 1,2,21,4,5,150,7,8,5085,10,11,2892,13,14,10905,16,17,984114,19,20,

%T 137739,22,23,472344,25,26,900792441,28,29,5314350,31,32,17537487,34,

%U 35,13832346276,37,38,186535713,40,41,602654010,43,44,1408273477425

%N Number of totally ramified extensions over Q_3 with degree n in the algebraic closure of Q_3.

%D M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Academie des Sciences, Paris 254, 255, 1962

%F a(n)=n*(sum_{s=0}^m p^s*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=3, n=h*p^m, with gcd(h, p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i)

%e a(4)=4 There are 4 totally ramified extensions both with Galoisgroup D_8, so 2 of them are isomorphic to Q_3[x]/(x^4+3) and two of them are isomorphic to Q_3[x]/(x^4-3)

%p p:=3; eps:=proc()local p,s,i,sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p,n; p:=args[1]; n:=args[2]; return igcd(n,p^n); end: qpart:=proc() local p,n; p:=args[1]; n:=args[2]; return n/igcd(n,p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p,n)); h:=qpart(p,n); for s from 0 to m do summe:=summe+(p^s*(p^(eps(p,s)*n)-p^(eps(p,s-1)*n)); od; a(n):=n*summe;

%Y Cf. A100976, A100977, A100978, A100979, A100981, A100983, A100984, A100985, A100986.

%K nonn

%O 1,2

%A Volker Schmitt (clamsi(AT)gmx.net), Nov 25 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 22:37 EST 2019. Contains 329782 sequences. (Running on oeis4.)