The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100953 Number of partitions of n into relatively prime parts such that multiplicities of parts are also relatively prime. 62
 1, 1, 0, 1, 2, 5, 5, 13, 14, 25, 28, 54, 54, 99, 105, 160, 192, 295, 315, 488, 546, 760, 890, 1253, 1404, 1945, 2234, 2953, 3459, 4563, 5186, 6840, 7909, 10029, 11716, 14843, 17123, 21635, 25035, 30981, 36098, 44581, 51370, 63259, 73223, 88739, 103048, 124752 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA Moebius transform of A000837. MAPLE read transforms : a000837 := [] : b000837 := fopen("b000837.txt", READ) : bfil := readline(b000837) : while StringTools[WordCount](bfil) > 0 do b := sscanf( bfil, "%d %d") ; a000837 := [op(a000837), op(2, b)] ; bfil := readline(b000837) ; od: fclose(b000837) ; a000837 := subsop(1=NULL, a000837) : a := MOBIUS(a000837) : for n from 1 to 120 do printf("%d, ", op(n, a)) ; od: # R. J. Mathar, Mar 12 2008 # second Maple program: with(numtheory): with(combinat): b:= proc(n) option remember; `if`(n=0, 1, add(        mobius(n/d)*numbpart(d), d=divisors(n)))     end: a:= proc(n) option remember; `if`(n=0, 1, add(        mobius(n/d)*b(d), d=divisors(n)))     end: seq(a(n), n=0..60);  # Alois P. Heinz, Dec 19 2017 MATHEMATICA Table[Length[Select[IntegerPartitions[n], And[GCD@@#===1, GCD@@Length/@Split[#]===1]&]], {n, 20}] (* Gus Wiseman, Dec 19 2017 *) CROSSREFS Cf. A000740, A000837, A007916, A281116, A296302. Sequence in context: A183719 A239340 A124201 * A112835 A206625 A176168 Adjacent sequences:  A100950 A100951 A100952 * A100954 A100955 A100956 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Jan 11 2005 EXTENSIONS More terms from David Wasserman and R. J. Mathar, Mar 04 2008 a(0)=1 prepended by Alois P. Heinz, Dec 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 14:02 EST 2020. Contains 331094 sequences. (Running on oeis4.)