

A100934


Numbers having more than one representation as the product of consecutive integers.


0



6, 24, 120, 210, 720, 5040, 40320, 175560, 362880, 3628800, 17297280, 19958400, 39916800, 259459200, 479001600, 6227020800, 87178291200
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All the factorials occur because we allow products to start with 1. See A064224 for a more restrictive case.


LINKS

Table of n, a(n) for n=1..17.
H. L. Abbott, P. Erdos and D. Hanson, On the numbers of times an integer occurs as a binomial coefficient, Amer. Math. Monthly, (March 1974), 256261.


EXAMPLE

120 is here because 120 = 2*3*4*5 = 4*5*6.


MATHEMATICA

nn=10^10; t3={}; Do[m=0; p=n; While[m++; p=p(n+m); p<=nn, t3={t3, p}], {n, Sqrt[nn]}]; t3=Sort[Flatten[t3]]; lst={}; Do[If[t3[[i]]==t3[[i+1]], AppendTo[lst, t3[[i]]]], {i, Length[t3]1}]; Union[lst]


CROSSREFS

Cf. A064224, A003015 (numbers occurring 5 or more times in Pascal's triangle).
Sequence in context: A293236 A217193 A109583 * A127917 A293118 A293121
Adjacent sequences: A100931 A100932 A100933 * A100935 A100936 A100937


KEYWORD

nonn,more


AUTHOR

T. D. Noe, Nov 22 2004


STATUS

approved



