

A100932


Number of partitions of n such that multiplicities of parts are divisors of n.


0



1, 2, 3, 5, 4, 10, 6, 17, 14, 26, 13, 66, 19, 63, 60, 126, 39, 243, 55, 338, 179, 310, 105, 1154, 209, 637, 482, 1458, 257, 3329, 341, 2878, 1200, 2386, 1178, 11262, 761, 4400, 2834, 14512, 1261, 23052, 1611, 18255, 10551, 13858, 2591, 83810, 4678, 38243
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..50.
Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449, 2018.


FORMULA

Coefficient of x^n in expansion of Product_{k=1..n} (1+Sum_{dn} x^(d*k)).


MAPLE

with(numtheory): seq(coeff(mul(1+add(x^(d*k), d=divisors(n)), k=1..n), x, n), n=1..60); (C. Ronaldo)


CROSSREFS

Cf. A018818.
Sequence in context: A069202 A244984 A247225 * A064360 A075158 A215526
Adjacent sequences: A100929 A100930 A100931 * A100933 A100934 A100935


KEYWORD

easy,nonn


AUTHOR

Vladeta Jovovic, Jan 11 2005


EXTENSIONS

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005


STATUS

approved



