login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100882 Number of partitions of n in which the sequence of frequencies of the summands is nonincreasing. 20
1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 18, 21, 29, 29, 40, 47, 56, 62, 83, 86, 111, 124, 146, 166, 207, 217, 267, 300, 352, 389, 471, 505, 604, 668, 772, 860, 1015, 1085, 1279, 1419, 1622, 1780, 2072, 2242, 2595, 2858, 3231, 3563, 4092, 4421, 5057, 5557, 6250 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

EXAMPLE

a(4) = 4 because in each of the partitions 4, 3+1, 2+2, 1+1+1+1, the frequencies of the summands is nonincreasing as the summands decrease. The partition 2+1+1 is not counted because 2 is used once, but 1 is used twice.

MAPLE

b:= proc(n, i, t) option remember;

      if n<0 then 0

    elif n=0 then 1

    elif i=1 then `if`(n<=t, 1, 0)

    elif i=0 then 0

    else      b(n, i-1, t)

         +add(b(n-i*j, i-1, j), j=1..min(t, floor(n/i)))

      fi

    end:

a:= n-> b(n, n, n):

seq(a(n), n=0..60);  # Alois P. Heinz, Feb 21 2011

MATHEMATICA

b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n == 0, 1, i == 1, If[n <= t, 1, 0], i == 0, 0, True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, 1, Min[t, Floor[n/i]]}]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 60}] (* Jean-Fran├žois Alcover, Oct 26 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A100881, A100883, A100884.

Sequence in context: A331076 A316496 A332339 * A171979 A181694 A297166

Adjacent sequences:  A100879 A100880 A100881 * A100883 A100884 A100885

KEYWORD

nonn

AUTHOR

David S. Newman, Nov 21 2004

EXTENSIONS

More terms from Alois P. Heinz, Feb 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 19:33 EST 2021. Contains 340352 sequences. (Running on oeis4.)