%I #44 Nov 16 2023 18:19:26
%S 1,2,6,1,8,5,9,5,0,7,1,4,2,9,1,4,8,7,4,1,9,9,0,5,4,2,2,8,6,8,5,5,2,1,
%T 7,0,8,5,9,9,1,7,1,2,8,0,2,6,3,7,6,0,8,5,5,7,4,1,3,0,9,8,8,7,6,7,7,3,
%U 7,0,4,0,2,7,6,1,8,2,9,6,1,0,1,2,2,3,4,5,3,7,7,0,9,8,9,0,3,4,9,1,1,2,2,7,0
%N Decimal expansion of log(4)/log(3).
%C log_3(4) is the Hausdorff dimension of the Koch snowflake.
%C A transcendental number. Also the Hausdorff dimension of 2D Cantor dust (for N-dimensional Cantor dust, see A102525). - _Stanislav Sykora_, Apr 19 2016
%D Martin Gardner, Aha! Gotcha!, "A Pathological Curve", W. H. Freeman, NY, 1982, p. 77.
%D Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, University of Chicago Press, IL, 1983, p. 227.
%D Martin Gardner, The Colossal Book of Mathematics, W. W. Norton, NY, 2001, p. 322.
%D Nigel Lesmoir-Gordon, Will Rood and Ralph Edney, Introducing Fractal Geometry, Totem Books USA, Lanham, MD, 2001, p. 28.
%D Manfred Schroeder, Fractals, Chaos, Power Laws, Freeman, 1991, p. 177.
%D David Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin Books, 1991, pp. 135-136.
%H V. L. Almstrum, <a href="http://www.cs.utexas.edu/users/s2s/latest/viskoch1/src/visualKoch.htm">Visual Koch (Applet)</a>.
%H Robert Ferreol and Jacques Mandonnet, <a href="http://www.mathcurve.com/fractals/koch/koch.shtml">Koch's Curve</a>.
%H Florida Atlantic University, <a href="http://math.fau.edu/Kasia/Cabri/fractals/koch.html">Koch's Curve Applet</a>.
%H P. Kernan, <a href="http://theory2.phys.cwru.edu/~pete/java_chaos/KochApplet.html">Koch Snowflake</a>.
%H Kris, <a href="http://www.3rd-imperium.com/Java/Fractals/KF.html">Koch Fractal,Koch Snowflake</a>.
%H Aaron Krowne, PlanetMath.org, <a href="http://planetmath.org/encyclopedia/KochCurve.html">Koch curve</a>.
%H M. L. Lapidus & E. P. J. Pearse, <a href="http://www.arXiv.org/abs/math-ph/0412029">A tube formula for the Koch snowflake curve,with applications to complex dimensions</a>, arXiv:math-ph/0412029, 2004-2005.
%H Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/log4log3.txt">log4/log3 to 10000 digits</a>.
%H Larry Riddle, <a href="http://ecademy.agnesscott.edu/~lriddle/ifs/kcurve/kcurve.htm">Koch Curve</a>.
%H Alain Schuler, <a href="https://web.archive.org/web/20061209203925/http://www.enseeiht.fr/hmf/travaux/CD9900/travaux/optmfn/hi/00pa/mfn16/outline.htm">Chaos and fractal:the Koch's curve</a>.
%H Gerard Villemin, Almanac of Numbers, <a href="http://villemin.gerard.free.fr/Wwwgvmm/Suite/FracCour.htm">Koch's Curve or Snowflake</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KochSnowflake.html">Koch Snowflake</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CantorDust.html">Cantor Dust</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Koch_curve">Koch curve</a>.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F Equals 2*A102525. - _Stanislav Sykora_, Apr 19 2016
%e log(4)/log(3) = 1.26185950714291487419905422868552170859917128...
%t RealDigits[Log[3, 4], 10, 111][[1]] (* _Robert G. Wilson v_, Jan 07 2005 *)
%o (PARI) log(4)/log(3) \\ _Altug Alkan_, Apr 19 2016
%Y Cf. A094148, A102525.
%K nonn,cons
%O 1,2
%A _Lekraj Beedassy_, Jan 07 2005
%E More terms from _Robert G. Wilson v_, Jan 07 2005