|
|
A100775
|
|
a(n) = 97*n + 101.
|
|
4
|
|
|
101, 198, 295, 392, 489, 586, 683, 780, 877, 974, 1071, 1168, 1265, 1362, 1459, 1556, 1653, 1750, 1847, 1944, 2041, 2138, 2235, 2332, 2429, 2526, 2623, 2720, 2817, 2914, 3011, 3108, 3205, 3302, 3399, 3496, 3593, 3690, 3787, 3884, 3981, 4078, 4175, 4272
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Note that 97 is the largest two-digit prime and 101 is the smallest three-digit prime.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (2, -1).
|
|
FORMULA
|
a(n) = 2*a(n-1) - a(n-2); a(0)=101, a(1)=198. - Harvey P. Dale, Nov 26 2013
G.f.: (101-4*x)/(x-1)^2. - Harvey P. Dale, Nov 26 2013
|
|
EXAMPLE
|
If n=1, then 97*1 + 101 = 198.
|
|
MATHEMATICA
|
97*Range[0, 50]+101 (* or *) LinearRecurrence[{2, -1}, {101, 198}, 50] (* Harvey P. Dale, Nov 26 2013 *)
|
|
PROG
|
(MAGMA) [97*n + 101: n in [0..50]]; // Vincenzo Librandi, Jul 14 2011
(PARI) a(n)=97*n+101 \\ Charles R Greathouse IV, Oct 16 2015
|
|
CROSSREFS
|
Cf. A101084, A017029, A100776, A101442.
Sequence in context: A269575 A177032 A141913 * A044333 A044714 A158128
Adjacent sequences: A100772 A100773 A100774 * A100776 A100777 A100778
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Parthasarathy Nambi, Jan 03 2005
|
|
EXTENSIONS
|
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
Edited by Ray Chandler, Jan 25 2005
|
|
STATUS
|
approved
|
|
|
|