

A100759


Beginning with 2, least prime not occurring earlier such that the concatenation of first n terms has the least prime factor prime(n).


1



2, 7, 5, 17, 127, 3, 347, 37, 71, 829, 89, 79, 311, 271, 1103, 823, 827, 7219, 149, 499, 3947, 6367, 2861, 3673, 13781, 2281, 281, 229, 353, 1597, 191, 1879, 2609, 10993, 19961, 4789, 383, 1093, 521, 13681, 9227, 12619, 8219, 12037, 8573, 7621, 6029
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: Every prime is a member.


LINKS

Table of n, a(n) for n=1..47.


EXAMPLE

a(1) = 2, a(2) = 7 and the least prime divisor of 27 is 3.


MATHEMATICA

a = {2}; b = 2; Do[i = 1; While[Length[Intersection[a, {Prime[i]}]] == 1, i++ ]; While[ !FactorInteger[FromDigits[Join[IntegerDigits[b], IntegerDigits[Prime[i]]]]][[1, 1]] == Prime[n], i++ ]; AppendTo[a, Prime[i]]; b = FromDigits[Join[IntegerDigits[b], IntegerDigits[Prime[i]]]], {n, 2, 30}]; a (* Stefan Steinerberger, Dec 21 2007 *)


CROSSREFS

Cf. A114025.
Sequence in context: A233248 A114025 A135566 * A205448 A180510 A152555
Adjacent sequences: A100756 A100757 A100758 * A100760 A100761 A100762


KEYWORD

base,less,nonn


AUTHOR

Amarnath Murthy, Nov 23 2004


EXTENSIONS

More terms from Stefan Steinerberger, Dec 21 2007
More terms from David Wasserman, Mar 04 2008


STATUS

approved



