login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100672 Second least-significant bit in the binary expansion of the n-th prime. 6
1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n)=1 iff prime(n) is a member of A045326 (equivalently for n>1, iff prime(n)-3 is divisible by 4).

LINKS

Table of n, a(n) for n=1..105.

Eric Weisstein's World of Mathematics, Fermat's 4n Plus 1 Theorem.

Eric Weisstein's World of Mathematics, Gaussian Prime.

FORMULA

a(n) = 1-A098033(n), n>1. - Steven G. Johnson (stevenj(AT)math.mit.edu), Sep 18 2008

a(n) = ((ithprime(n)-2) mod 4) mod 3 (Conjectured). - Gary Detlefs, Dec 06 2011

EXAMPLE

a(2)=1 because Prime[2]=11_2 (in binary; decimal = 3_10) and its 2^1 bit is 1.

a(3)=0 because Prime[3]=101_2 (in binary; decimal = 5_10) and its 2^1 bit is 0.

MAPLE

A100672 := proc(n)

        if n = 1 then

                1 ;

        else

                ((ithprime(n) mod 4)-1)/2;

        end if;

end proc: # R. J. Mathar, Oct 06 2011

seq(((ithprime(n)-2) mod 4) mod 3, n= 1 ..300); # Gary Detlefs, Dec 06 2011

MATHEMATICA

Table[Reverse[RealDigits[Prime[k], 2][[1]]][[2]], {k, 1, 128}]

PROG

(PARI) for(k=1, 105, print1( bittest(prime(k), 1), ", ")) \\ Washington Bomfim, Jan 18 2011

CROSSREFS

Cf. A045326, A002144, A002145.

Sequence in context: A123594 A145006 A080813 * A079559 A175480 A229062

Adjacent sequences:  A100669 A100670 A100671 * A100673 A100674 A100675

KEYWORD

base,nonn,easy

AUTHOR

Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 21:03 EST 2016. Contains 278952 sequences.