login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100672 Second least-significant bit in the binary expansion of the n-th prime. 6
1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n)=1 iff prime(n) is a member of A045326 (equivalently for n>1, iff prime(n)-3 is divisible by 4).

LINKS

Table of n, a(n) for n=1..105.

Eric Weisstein's World of Mathematics, Fermat's 4n Plus 1 Theorem.

Eric Weisstein's World of Mathematics, Gaussian Prime.

FORMULA

a(n) = 1-A098033(n), n>1. Steven G. Johnson (stevenj(AT)math.mit.edu), Sep 18 2008

a(n) = ((ithprime(n)-2) mod 4) mod 3 (Conjectured). [From Gary Detlefs, Dec 06 2011]

EXAMPLE

a(2)=1 because Prime[2]=11_2 (in binary; decimal = 3_10) and its 2^1 bit is 1.

a(3)=0 because Prime[3]=101_2 (in binary; decimal = 5_10) and its 2^1 bit is 0.

MAPLE

A100672 := proc(n)

        if n = 1 then

                1 ;

        else

                ((ithprime(n) mod 4)-1)/2;

        end if;

end proc: # R. J. Mathar, Oct 06 2011

seq(((ithprime(n)-2) mod 4) mod 3, n= 1 ..300); [Gary Detlefs, Dec 06 2011]

MATHEMATICA

Table[Reverse[RealDigits[Prime[k], 2][[1]]][[2]], {k, 1, 128}]

PROG

(PARI) for(k=1, 105, print1( bittest(prime(k), 1), ", ")) - W. Bomfim, Jan 18, 2011

CROSSREFS

Cf. A045326, A002144, A002145.

Sequence in context: A123594 A145006 A080813 * A079559 A175480 A229062

Adjacent sequences:  A100669 A100670 A100671 * A100673 A100674 A100675

KEYWORD

base,nonn,easy

AUTHOR

Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 14:55 EST 2014. Contains 252364 sequences.