

A100639


Residues modulo 10 of the irregular primes (A000928).


0



7, 9, 7, 1, 3, 1, 9, 7, 3, 7, 3, 1, 3, 3, 7, 1, 7, 3, 9, 9, 1, 9, 1, 3, 1, 3, 7, 1, 3, 1, 7, 7, 7, 7, 3, 7, 3, 7, 9, 1, 7, 3, 9, 3, 7, 3, 1, 7, 1, 7, 1, 3, 7, 9, 1, 1, 7, 9, 7, 1, 7, 9, 3, 1, 1, 1, 7, 9, 1, 3, 3, 1, 7, 9, 7, 9, 3, 1, 7, 1, 7, 9, 7, 7, 1, 9, 9, 9, 3, 9, 3, 9, 7, 9, 3, 9, 1, 7, 3, 9, 1, 3, 3, 9, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 425430 (but there are errors).


LINKS

Table of n, a(n) for n=1..105.


EXAMPLE

a(6) = 1 because the 6th irregular prime is 131.


MATHEMATICA

fQ[n_] := Block[{p = n, k = 1}, While[ 2*k <= p  3 && Mod[ Numerator[ BernoulliB[ 2*k ]], p ] != 0, k++ ]; 2k != p  1]; Mod[ Select[ Prime[ Range[2, 275]], fQ[ # ] &], 10] (* Robert G. Wilson v, Dec 10 2004 *)


CROSSREFS

Cf. A000928.
Sequence in context: A239069 A154168 A019644 * A194641 A248674 A108743
Adjacent sequences: A100636 A100637 A100638 * A100640 A100641 A100642


KEYWORD

easy,nonn


AUTHOR

Pahikkala Jussi, Dec 04 2004


EXTENSIONS

More terms from Robert G. Wilson v, Dec 10 2004


STATUS

approved



