login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100638 Successive powers of the matrix A=[1,2;3,4] written by rows in groups of 4. 4
1, 2, 3, 4, 7, 10, 15, 22, 37, 54, 81, 118, 199, 290, 435, 634, 1069, 1558, 2337, 3406, 5743, 8370, 12555, 18298, 30853, 44966, 67449, 98302, 165751, 241570, 362355, 528106, 890461, 1297782, 1946673, 2837134, 4783807, 6972050, 10458075 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Consider the matrix A = [1, 2; 3, 4]. Then the sequence gives a(1) = A_{1,1} = A_11, a(2) = A_12, a(3) = A_21, a(4) = A_22, a(5)=(A^2)_11, a(6)=(A^2)_12, a(7)=(A^2)_21, a(8)=(A^2)_22, a(9)=(A^3)_11, a(10)=(A^3)_12, ...

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

FORMULA

a(4n-3) = A124610(n), a(4n-2) = 2 A015535(n), a(4n-1) = 3 A015535(n), a(4n) = a(4n-3) + a(4n-1). - M. F. Hasler, Dec 01 2008

a(n) = 5*a(n-4)+2*a(n-8). a(4n+1)=A124610(n+1), n>=0. G.f.: x*(1+2x+3x^2+4x^3+2x^4+2x^7) / (1-5x^4-2x^8). - R. J. Mathar, Dec 04 2008

MAPLE

a:= proc(n) local r, m; (<<1|2>, <3|4>>^iquo(n+3, 4, 'r'))[iquo(r+2, 2, 'm'), m+1] end: seq(a(n), n=1..50); # Alois P. Heinz, Dec 01 2008

MATHEMATICA

LinearRecurrence[{0, 0, 0, 5, 0, 0, 0, 2}, {1, 2, 3, 4, 7, 10, 15, 22}, 50] (* Jean-François Alcover, May 18 2018, after R. J. Mathar *)

PROG

A100638(n)=([1, 2; 3, 4]^((n-1)\4+1))[(n-1)%4\2+1, 2-n%2] /* M. F. Hasler, Dec 01 2008 */

CROSSREFS

Sequence in context: A129490 A018132 A329758 * A319437 A270659 A159288

Adjacent sequences: A100635 A100636 A100637 * A100639 A100640 A100641

KEYWORD

easy,nonn

AUTHOR

Simone Severini, Dec 04 2004

EXTENSIONS

Edited by Benoit Jubin, M. F. Hasler and N. J. A. Sloane, Dec 01 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 02:30 EST 2022. Contains 358572 sequences. (Running on oeis4.)