login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100616 Let B(n)(x) be the Bernoulli polynomials as defined in A001898, with B(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives denominators of B(n)(2). 5
1, 1, 6, 2, 10, 6, 42, 6, 30, 10, 22, 6, 2730, 210, 6, 2, 34, 30, 798, 42, 330, 110, 46, 6, 2730, 546, 6, 2, 290, 30, 14322, 462, 510, 170, 2, 6, 54834, 51870, 6, 2, 4510, 330, 1806, 42, 690, 46, 94, 6, 46410, 6630, 66, 22, 530, 30, 798, 798, 174, 290, 118, 6, 56786730 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

LINKS

Robert Israel, Table of n, a(n) for n = 0..1000

FORMULA

E.g.f.: (x/(exp(x)-1))^2. - Vladeta Jovovic, Feb 27 2006

EXAMPLE

1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.

MAPLE

S:= series((x/(exp(x)-1))^2, x, 101):

seq(denom(coeff(S, x, n)*n!), n=0..100); # Robert Israel, Jun 02 2015

MATHEMATICA

Table[Denominator@NorlundB[n, 2], {n, 0, 59}] (* Arkadiusz Wesolowski, Oct 22 2012 *)

CROSSREFS

Cf. A001898, A027641, A027642, A100615.

Sequence in context: A055021 A260329 A141379 * A097474 A194351 A040035

Adjacent sequences:  A100613 A100614 A100615 * A100617 A100618 A100619

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane, Dec 03 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 17:19 EST 2016. Contains 279005 sequences.