

A100616


Let B(n)(x) be the Bernoulli polynomials as defined in A001898, with B(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives denominators of B(n)(2).


5



1, 1, 6, 2, 10, 6, 42, 6, 30, 10, 22, 6, 2730, 210, 6, 2, 34, 30, 798, 42, 330, 110, 46, 6, 2730, 546, 6, 2, 290, 30, 14322, 462, 510, 170, 2, 6, 54834, 51870, 6, 2, 4510, 330, 1806, 42, 690, 46, 94, 6, 46410, 6630, 66, 22, 530, 30, 798, 798, 174, 290, 118, 6, 56786730
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


REFERENCES

F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103104. [There is an error in the recurrence for B_s^{(r)}.]


LINKS

Table of n, a(n) for n=0..60.


FORMULA

E.g.f.: (x/(exp(x)1))^2.  Vladeta Jovovic, Feb 27 2006


EXAMPLE

1, 1, 5/6, 1/2, 1/10, 1/6, 5/42, 1/6, 7/30, 3/10, 15/22, 5/6, 7601/2730, 691/210, 91/6, 35/2, 3617/34, 3617/30, 745739/798, 43867/42, ... = A100615/A100616.


MATHEMATICA

Table[Denominator@NorlundB[n, 2], {n, 0, 59}] (* Arkadiusz Wesolowski, Oct 22 2012 *)


CROSSREFS

Cf. A001898, A027641, A027642, A100615.
Sequence in context: A018801 A055021 A141379 * A097474 A194351 A040035
Adjacent sequences: A100613 A100614 A100615 * A100617 A100618 A100619


KEYWORD

nonn,frac


AUTHOR

N. J. A. Sloane, Dec 03 2004


STATUS

approved



