login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100615 Let B(n)(x) be the Bernoulli polynomials as defined in A001898, with B(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives numerators of B(n)(2). 7

%I

%S 1,-1,5,-1,1,1,-5,-1,7,3,-15,-5,7601,691,-91,-35,3617,3617,-745739,

%T -43867,3317609,1222277,-5981591,-854513,5436374093,1181820455,

%U -213827575,-76977927,213745149261,23749461029,-249859397004145,-8615841276005,238988952277727,84802531453387

%N Let B(n)(x) be the Bernoulli polynomials as defined in A001898, with B(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives numerators of B(n)(2).

%D F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

%H Robert Israel, <a href="/A100615/b100615.txt">Table of n, a(n) for n = 0..575</a>

%F E.g.f.: (x/(exp(x)-1))^2. - _Vladeta Jovovic_, Feb 27 2006

%F a(n) = numerator(Sum_{k=0..n}(-1)^k*k!/(k+1)*Sum_{j=0..n-k} C(n,j)*Stirling2(n-j,k)*B(j)), where B(n) is Bernoulli numbers. - _Vladimir Kruchinin_, Jun 02 2015

%e 1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.

%p S:= series((x/(exp(x)-1))^2, x, 41):

%p seq(numer(coeff(S,x,j)*j!), j=0..40); # _Robert Israel_, Jun 02 2015

%t Table[Numerator@NorlundB[n, 2], {n, 0, 32}] (* _Arkadiusz Wesolowski_, Oct 22 2012 *)

%o (Maxima)

%o a(n):=sum((-1)^k*k!/(k+1)*sum(binomial(n,j)*stirling2(n-j,k)*bern(j),j,0,n-k),k,0,n); /* _Vladimir Kruchinin_, Jun 02 2015 */

%Y Cf. A001898, A027641, A027642, A100616.

%K sign,frac

%O 0,3

%A _N. J. A. Sloane_, Dec 03 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 02:54 EDT 2019. Contains 323597 sequences. (Running on oeis4.)