|
|
A100599
|
|
Numbers k such that (prime(k)-1)! + prime(k)^7 is prime.
|
|
2
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
k = {7, 14, 16, 59} yields primes p(k) = {17, 43, 53, 277}. There are no more such k up to k=100. Computed in collaboration with Ray Chandler.
a(5) > 600. - Jinyuan Wang, Apr 10 2020
|
|
LINKS
|
Table of n, a(n) for n=1..4.
|
|
FORMULA
|
Numbers k such that (prime(k)-1)! + prime(k)^7 is prime, where prime(k) is the k-th prime.
|
|
EXAMPLE
|
a(7) = 7 because (prime(7)-1)! + prime(7)^7 = (17-1)! + 17^7 = 20923200226673 is the smallest prime of that form.
|
|
MATHEMATICA
|
lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)!+p^7], AppendTo[lst, n]], {n, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008 *)
|
|
PROG
|
(PARI) is(k) = ispseudoprime((prime(k)-1)! + prime(k)^7); \\ Jinyuan Wang, Apr 10 2020
|
|
CROSSREFS
|
Cf. A100598, A100600, A100858.
Sequence in context: A269173 A167197 A336797 * A198390 A118905 A254064
Adjacent sequences: A100596 A100597 A100598 * A100600 A100601 A100602
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Jonathan Vos Post, Nov 30 2004
|
|
STATUS
|
approved
|
|
|
|