login
A100594
Floor of Pi^(2*n)/Zeta(2*n).
3
6, 90, 945, 9450, 93555, 924041, 9121612, 90030844, 888579011, 8769948429, 86555983552, 854273468992, 8431341566236, 83214006759229, 821289329637860, 8105800788023426, 80001047145799660, 789578687036411293
OFFSET
1,1
LINKS
EXAMPLE
a(1)=6 because Zeta(2*1)=Pi^2/6 implies Pi^2/Zeta(2)=6 and floor(6)=6.
a(6)=924041 because Zeta(2*6)=691/638512875*Pi^12 implies Pi^12/Zeta(12)=638512875/691 and floor(638512875/691)=924041.
MAPLE
seq(simplify(floor(Pi^(2*k)/Zeta(2*k))), k=1..24);
MATHEMATICA
Table[Floor[Pi^(2*n)/Zeta[2*n]], {n, 20}] (* Terry D. Grant, May 28 2017 *)
PROG
(PARI) {a(n)=if(n<1, 0, floor(-2*(2*n)!/(-4)^n/bernfrac(2*n)))} /* Michael Somos, Feb 18 2007 */
CROSSREFS
Sequence in context: A113404 A177283 A121607 * A091800 A336042 A353230
KEYWORD
nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 30 2004
STATUS
approved