The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100559 Smallest prime equal to the sum of n distinct squares. 1
 5, 29, 71, 79, 131, 179, 269, 349, 457, 569, 719, 971, 1171, 1327, 1601, 1913, 2269, 2593, 2999, 3539, 4099, 4549, 5231, 5717, 6529, 7297, 7879, 8779, 9791, 10711, 11867, 12809, 14081, 15269, 16561, 17863, 19463, 20771, 22541, 24329, 25913 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS The Mathematica code uses backtracking to find the least prime for each n. The Print command may be uncommented to show the sum that produces the prime. - T. D. Noe, Jan 04 2005 LINKS EXAMPLE a(3)=29 because 29=2^2+3^2+4^2; a(4) = 71 = 1^2+3^2+5^2+6^2 a(5)=79 because 79=1^2+2^2+3^2+4^2+7^2. MATHEMATICA \$RecursionLimit=1000; try2[lev_] := Module[{t, j, ss}, ss=Plus@@(Take[soln, lev-1]^2); If[lev>n, If[ss<=minPrime&&PrimeQ[ss], minPrime=ss; bestSoln={ss, soln}], If[lev==1, t=1, t=soln[[lev-1]]+1]; j=t; While[ss+Sum[(j+i)^2, {i, 0, n-lev}] <= minPrime, soln[[lev]]=j; try2[lev+1]; soln[[lev]]=t; j++ ]]]; Table[minPrime=Infinity; bestSoln={}; soln=Table[1, {n}]; try2[1]; (*Print[bestSoln]; *) bestSoln[[1]], {n, 2, 50}] (T. D. Noe) CROSSREFS Sequence in context: A108928 A097812 A176333 * A224498 A087348 A154412 Adjacent sequences:  A100556 A100557 A100558 * A100560 A100561 A100562 KEYWORD nonn,easy AUTHOR Giovanni Teofilatto, Jan 02 2005 EXTENSIONS More terms from T. D. Noe, Jan 04 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 04:35 EST 2020. Contains 331183 sequences. (Running on oeis4.)