login
A100538
Volume of the 3-dimensional box of sides of length equal to consecutive Padovan numbers (A000931). These boxes form a spiral in three dimensions similar to the spiral of Fibonacci boxes in two dimensions.
3
1, 2, 4, 12, 24, 60, 140, 315, 756, 1728, 4032, 9408, 21756, 50764, 117845, 273910, 637260, 1480404, 3442800, 8003000, 18603000, 43251975, 100540440, 233735040, 543371136, 1263161472, 2936540824, 6826574552, 15869878969, 36893076570
OFFSET
1,2
COMMENTS
a(n)^(1/3) rounded to the nearest integer equals A000931(n+5). - Peter M. Chema, Apr 24 2017
LINKS
Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
FORMULA
For large n a(n+1) -> a(n) * p^3 where p is the plastic number = 1.324718... a(n+1) = a(n)+ (a(n)/P(n))*P(n+1 ) where P are the Padovan numbers (A000931) starting 1, 1, 1, 2, 2, 3, 4, 5, 7, etc.
a(n) = +a(n-1) +2*a(n-2) +3*a(n-3) -2*a(n-4) +4*a(n-5) -4*a(n-6) -a(n-7) -a(n-8) -a(n-10) = A000931(n+4)*A000931(n+5)*A000931(n+6). G.f.: x*(1+x+x^3) / ( (x-1)*(x^3-2*x^2+3*x-1)*(x^6+3*x^5+5*x^4+5*x^3+5*x^2+3*x+1) ). - R. J. Mathar, Sep 14 2010
MATHEMATICA
LinearRecurrence[{1, 2, 3, -2, 4, -4, -1, -1, 0, -1}, {1, 2, 4, 12, 24, 60, 140, 315, 756, 1728}, 50] (* Vincenzo Librandi, Apr 24 2017 *)
CROSSREFS
Cf. A000931.
Sequence in context: A057422 A036045 A331392 * A303794 A135139 A161894
KEYWORD
nonn
AUTHOR
John Lien, Nov 27 2004
EXTENSIONS
More terms from R. J. Mathar, Sep 14 2010
STATUS
approved