

A100529


a(n) = minimal k such that n has a partition into k parts with the property that every number <= m can be partitioned into a subset of these parts.


4



1, 1, 1, 1, 2, 1, 1, 3, 4, 3, 4, 2, 2, 1, 1, 12, 15, 13, 14, 11, 12, 9, 10, 6, 6, 4, 4, 2, 2, 1, 1, 84, 91, 82, 89, 77, 80, 70, 73, 60, 63, 53, 54, 43, 44, 35, 36, 26, 26, 20, 20, 14, 14, 10, 10, 6, 6, 4, 4, 2, 2, 1, 1, 908
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


LINKS

Table of n, a(n) for n=1..64.
E. O'Shea, Mpartitions: optimal partitions of weight for one scale pan, Discrete Math. 289 (2004), 8193.
O. J. Rodseth, Enumeration of Mpartitions, Discrete Math., 306 (2006), 694698.


FORMULA

If 2^m + 2^(m1)  1 <= n <= 2^(m+1)  1 for some m, let i = 2^(m+1)  1  n. Then a(n) = A000123([i/2]). This determines half the values.


CROSSREFS

Cf. A000123 (binary partitions), A002033 (perfect partitions).
Sequence in context: A319516 A015138 A157807 * A262953 A226209 A302097
Adjacent sequences: A100526 A100527 A100528 * A100530 A100531 A100532


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Dec 31 2004


STATUS

approved



