login
A100523
a(n) = a(n-1)^2 + 2*a(n-1) - 1 with a(0) = 1.
1
1, 2, 7, 62, 3967, 15745022, 247905749270527, 61457260521381894004129398782, 3776994870793005510047522464634252677140721938309041881087
OFFSET
0,2
FORMULA
a(n) ~ c^(2^n), where c = 1.6784589651254290832096890907802189718037513767396728769965837700954845976... . - Vaclav Kotesovec, Dec 18 2014
MATHEMATICA
RecurrenceTable[{a[n] == a[n-1]^2 + a[n-1]*2 - 1, a[0] == 1}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
PROG
(Magma) [n le 1 select 1 else Self(n-1)^2 +2*Self(n-1) -1: n in [1..13]]; // G. C. Greubel, Jun 26 2022
(SageMath)
def a(n): return 1 if (n==0) else a(n-1)^2 + 2*a(n-1) - 1 # a=A100523
[a(n) for n in (0..12)] # G. C. Greubel, Jun 26 2022
CROSSREFS
Cf. A004019.
Sequence in context: A153694 A354306 A228906 * A181030 A006506 A346781
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 24 2004
STATUS
approved