This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100406 a(n) = repeating period of the digital roots of the sequence {m^n, m=1,2,3...}. 3
 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1, 124875, 9, 147, 157842, 9, 174, 18, 9, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sequence has period 9. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1). FORMULA a(n) = (1/81)*(70843*(n mod 9) + 70852*((n+1) mod 9) + 72175*((n+2) mod 9) + 69286*((n+3) mod 9) + 1491268*((n+4) mod 9) - 1348484*((n+5) mod 9) + 69529*((n+6) mod 9) + 1194565*((n+7) mod 9) - 1053095*((n+8) mod 9)), with n>=0. - Paolo P. Lava, Oct 21 2008 G.f.: -x*(9*x^8+18*x^7+174*x^6+9*x^5+157842*x^4+147*x^3+9*x^2+124875*x+1) / ((x-1)*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Jun 25 2014 EXAMPLE The digital roots of 1^n are 1,1,1,1,1,1,.. so 1 is the repeating decimal period for 1^n. The digital roots of 2^n are 1,2,4,8,7,5.. so 124875 is the repeating decimal period for 2^n. The digital roots of 3^n are 1,3,9,9,9,9,.. so 9 is the repeating decimal period for 3^n. MATHEMATICA CoefficientList[Series[-(9 x^8 + 18 x^7 + 174 x^6 + 9 x^5 + 157842 x^4 + 147 x^3 + 9 x^2 + 124875 x + 1)/((x - 1) (x^2 + x + 1) (x^6 + x^3 + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 26 2014 *) PROG (PARI) f(n, m) = for(x=0, n, print1(droot(m^x)", ")) droot(n) = \ the digital root of a number. { local(x); x= n%9; if(x>0, return(x), return(9)) } (PARI) Vec(-x*(9*x^8+18*x^7+174*x^6+9*x^5+157842*x^4+147*x^3+9*x^2+124875*x+1) / ((x-1)*(x^2+x+1)*(x^6+x^3+1)) + O(x^100)) \\ Colin Barker, Jun 25 2014 CROSSREFS Cf. A100579, A100601. Sequence in context: A261439 A182658 A282919 * A183797 A234783 A206134 Adjacent sequences:  A100403 A100404 A100405 * A100407 A100408 A100409 KEYWORD easy,nonn,base AUTHOR Cino Hilliard, Dec 31 2004 EXTENSIONS Offset corrected by Nathaniel Johnston, May 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.