This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100326 Triangle, read by rows, where row n equals the inverse binomial of column n of square array A100324, which lists the self-convolutions of SHIFT(A003169). 8
 1, 1, 1, 3, 4, 1, 14, 20, 7, 1, 79, 116, 46, 10, 1, 494, 736, 311, 81, 13, 1, 3294, 4952, 2174, 626, 125, 16, 1, 22952, 34716, 15634, 4798, 1088, 178, 19, 1, 165127, 250868, 115048, 36896, 9094, 1724, 240, 22, 1, 1217270, 1855520, 862607, 285689, 74687 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The leftmost column equals A003169 shift one place right. Each column k>0 equals the convolution of the prior column and A003169. Row sums form A100327. The elements of the matrix inverse are T^(-1)(n,k) = (-1)^(n+k) * A158687(n,k). - R. J. Mathar, Mar 15 2013 LINKS Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened FORMULA T(n, 0) = A003169(n) = Sum_{k=0..n-1} (k+1)*T(n-1, k) for n>0, with T(0, 0)=1. T(n, k) = Sum_{i=0..n-k} T(i+1, 0)*T(n-i-1, k-1) for n>0. G.f.: A(x, y) = (1 + G(x))/(1 - y*G(x)), where G(x) is the g.f. of A003169. EXAMPLE Leftmost column equals Sum_{k=0..n-1} (k+1)*T(n-1,k): T(4,0) = 79 = 1*(14)+2*(20)+3*(7)+4*(1) = 1*T(3,0)+2*T(3,1)+3*T(3,2)+4*T(3,3). All other elements are from the convolution of prior column and A003169: T(4,2) = 46 = 1*(20)+3*(4)+14*(1) = T(1,0)*T(3,1)+T(2,0)*T(2,1)+T(3,0)*T(1,1). Rows begin: 1; 1, 1; 3, 4, 1; 14, 20, 7, 1; 79, 116, 46, 10, 1; 494, 736, 311, 81, 13, 1; 3294, 4952, 2174, 626, 125, 16, 1; 22952, 34716, 15634, 4798, 1088, 178, 19, 1; 165127, 250868, 115048, 36896, 9094, 1724, 240, 22, 1; 1217270, 1855520, 862607, 285689, 74687, 15629, 2561, 311, 25, 1; 9146746, 13979192, 6567862, 2229322, 608909, 136792, 25051, 3626, 391, 28, 1; ... First column forms A003169 shift right. Binomial transform of row 3 forms column 3 of square A100324: BINOMIAL([14,20,7,1]) = [14,34,61,96,140,194,259,...]. Binomial transform of row 4 forms column 4 of square A100324: BINOMIAL([79,116,46,10,1]) = [79,195,357,575,860,1224,...]. MAPLE A100326 := proc(n, k)     if k < 0 or k > n then         0 ;     elif n = 0 then         1 ;     elif k = 0 then         A003169(n)     else         add(procname(i+1, 0)*procname(n-i-1, k-1), i=0..n-k) ;     end if; end proc: # R. J. Mathar, Mar 15 2013 MATHEMATICA lim = 9; t[0, 0] = 1; t[n_, 0] := t[n, 0] = Sum[(k + 1)*t[n - 1, k], {k, 0, n - 1}]; t[n_, k_] := t[n, k] = Sum[t[j + 1, 0]*t[n - j - 1, k - 1], {j, 0, n - k}]; Flatten[ Table[ t[n, k], {n, 0, lim}, {k, 0, n}]] (* Jean-François Alcover, Sep 20 2011 *) PROG (PARI) T(n, k)=if(n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 19:49 EDT 2019. Contains 322446 sequences. (Running on oeis4.)