login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100314 Number of 2 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (01;1). 9
1, 4, 8, 14, 24, 42, 76, 142, 272, 530, 1044, 2070, 4120, 8218, 16412, 32798, 65568, 131106, 262180, 524326, 1048616, 2097194, 4194348, 8388654, 16777264, 33554482, 67108916, 134217782, 268435512, 536870970, 1073741884, 2147483710, 4294967360, 8589934658 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by 2^m+2^n+2(nm-n-m).

REFERENCES

Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000

Ronald Cools, Encyclopaedia of Cubature Formulas

S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.

Index entries for linear recurrences with constant coefficients, signature (4,-5,2).

FORMULA

a(n) = 2^n + 2*n.

From Gary W. Adamson, Jul 20 2007: (Start)

Binomial transform of (1, 3, 1, 1, 1, ...).

For n > 0, a(n) = 2*A005126(n-1). (End)

G.f.: 1 + 2x(2-4x+x^2)/((1-x)^2*(1-2x)). a(n+1)-a(n) = A052548(n). - R. J. Mathar, Jun 13 2008

From Colin Barker, Oct 16 2013: (Start)

a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).

G.f.: (3*x^2 - 1) / ((x - 1)^2*(2*x - 1)). (End)

E.g.f.: exp(2*x) + 2*x*exp(x). - Franck Maminirina Ramaharo, Dec 19 2018

a(n) = A000079(n) + A005843(n). - Muniru A Asiru, Dec 21 2018

MAPLE

a:= proc(n) 2^n + 2*n: end: seq(a(n), n=0..50); # Gary W. Adamson, Jul 20 2007

PROG

(MAGMA) [2^n+2*n: n in [1..40]]; // Vincenzo Librandi, Oct 22 2011

(Maxima) makelist(2^n + 2*n, n, 0, 50); /* Franck Maminirina Ramaharo, Dec 19 2018 */

(GAP) List([0..40], n->2^n+2*n); # Muniru A Asiru, Dec 21 2018

CROSSREFS

Cf. m=3: A100315; m=4: A100316.

Row sums of A131830.

Cf. A005126, A052548, A099003.

Cf. A000051, A000079, A001787, A002064, A005126, A058331, A100314, A131830, A132750, A176691.

Sequence in context: A060064 A045474 A131831 * A105143 A020185 A008029

Adjacent sequences:  A100311 A100312 A100313 * A100315 A100316 A100317

KEYWORD

nonn,easy

AUTHOR

Sergey Kitaev, Nov 13 2004

EXTENSIONS

a(0)=1 prepended by Alois P. Heinz, Dec 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 00:28 EST 2019. Contains 320329 sequences. (Running on oeis4.)