login
A100207
a(n) = 4 + 8*n + 10*n^2 + 4*n^3.
1
4, 26, 92, 226, 452, 794, 1276, 1922, 2756, 3802, 5084, 6626, 8452, 10586, 13052, 15874, 19076, 22682, 26716, 31202, 36164, 41626, 47612, 54146, 61252, 68954, 77276, 86242, 95876, 106202, 117244, 129026, 141572, 154906, 169052, 184034, 199876, 216602, 234236
OFFSET
0,1
REFERENCES
T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
FORMULA
From G. C. Greubel, Apr 01 2024: (Start)
a(n) = 2*(2*(n + 1)^3 - (n + 1)^2 + 1).
G.f.: 2*(2 + 5*x + 6*x^2 - x^3)/(1 - x)^4.
E.g.f.: 2*(2 + 11*x + 11*x^2 + 2*x^3)*exp(x). (End)
MATHEMATICA
Table[4+8*n+10*n^2+4*n^3, {n, 0, 50}] (* G. C. Greubel, Apr 01 2024 *)
PROG
(Magma) [4+8*n+10*n^2+4*n^3: n in [0..50]]; // Vincenzo Librandi, May 15 2011
(SageMath) [2*(2*(n+1)^3-(n+1)^2+1) for n in range(51)] # G. C. Greubel, Apr 01 2024
CROSSREFS
Sequence in context: A142962 A247194 A102198 * A172123 A298190 A299084
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 12 2005
STATUS
approved