login
A100187
Structured octagonal anti-diamond numbers (vertex structure 7).
3
1, 18, 77, 204, 425, 766, 1253, 1912, 2769, 3850, 5181, 6788, 8697, 10934, 13525, 16496, 19873, 23682, 27949, 32700, 37961, 43758, 50117, 57064, 64625, 72826, 81693, 91252, 101529, 112550, 124341, 136928
OFFSET
1,2
FORMULA
a(n) = (1/6)*(26*n^3 - 30*n^2 + 10*n).
G.f.: x*(1 + 14*x + 11*x^2)/(1-x)^4. - Colin Barker, Jan 19 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=18, a(3)=77, a(4)=204. - Harvey P. Dale, Dec 24 2012
E.g.f.: (3*x + 24*x^2 + 13*x^3)*exp(x)/3. - G. C. Greubel, Nov 08 2018
MATHEMATICA
Table[(26n^3-30n^2+10n)/6, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 18, 77, 204}, 40] (* Harvey P. Dale, Dec 24 2012 *)
PROG
(Magma) [(1/6)*(26*n^3-30*n^2+10*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
(PARI) vector(40, n, (13*n^3 -15*n^2 +5*n)/3) \\ G. C. Greubel, Nov 08 2018
CROSSREFS
Cf. A063523 = alternate vertex; A100188 = structured anti-diamonds; A100145 for more on structured numbers.
Sequence in context: A296363 A164603 A229714 * A197886 A039453 A342560
KEYWORD
nonn,easy
AUTHOR
James A. Record (james.record(AT)gmail.com), Nov 07 2004
STATUS
approved