OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
FORMULA
a(n) = (1/6)*(26*n^3 - 30*n^2 + 10*n).
G.f.: x*(1 + 14*x + 11*x^2)/(1-x)^4. - Colin Barker, Jan 19 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=18, a(3)=77, a(4)=204. - Harvey P. Dale, Dec 24 2012
E.g.f.: (3*x + 24*x^2 + 13*x^3)*exp(x)/3. - G. C. Greubel, Nov 08 2018
MATHEMATICA
Table[(26n^3-30n^2+10n)/6, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 18, 77, 204}, 40] (* Harvey P. Dale, Dec 24 2012 *)
PROG
(Magma) [(1/6)*(26*n^3-30*n^2+10*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
(PARI) vector(40, n, (13*n^3 -15*n^2 +5*n)/3) \\ G. C. Greubel, Nov 08 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
James A. Record (james.record(AT)gmail.com), Nov 07 2004
STATUS
approved