login
A100158
Structured disdyakis triacontahedral numbers (vertex structure 11).
4
1, 62, 293, 804, 1705, 3106, 5117, 7848, 11409, 15910, 21461, 28172, 36153, 45514, 56365, 68816, 82977, 98958, 116869, 136820, 158921, 183282, 210013, 239224, 271025, 305526, 342837, 383068, 426329, 472730, 522381, 575392
OFFSET
1,2
COMMENTS
Also structured deltoidal hexacontahedral numbers (vertex structure 11) (cf. A100166, A100159 = alternate vertices).
FORMULA
a(n) = (1/6)*(110*n^3 - 150*n^2 + 46*n).
G.f.: x*(1 + 58*x + 51*x^2)/(1-x)^4. - Colin Barker, Apr 16 2012
E.g.f.: x*(3 + 90*x + 55*x^2)*exp(x)/3. - G. C. Greubel, Oct 18 2018
MATHEMATICA
Table[(110*n^3 - 150*n^2 + 46*n)/6, {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 62, 293, 804}, 50] (* G. C. Greubel, Oct 18 2018 *)
PROG
(Magma) [(1/6)*(110*n^3-150*n^2+46*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
(PARI) vector(50, n, (110*n^3 - 150*n^2 + 46*n)/6) \\ G. C. Greubel, Oct 18 2018
CROSSREFS
Cf. A100159, A100160 = alternate vertices; A100145 for more on structured polyhedral numbers.
Sequence in context: A234483 A158067 A045220 * A100166 A100159 A100160
KEYWORD
nonn,easy
AUTHOR
James A. Record (james.record(AT)gmail.com), Nov 07 2004
STATUS
approved