login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100140 Largest denominator of greedy Egyptian fraction sum for M/N. 2
2, 6, 4, 20, 3, 231, 24, 45, 20, 4070, 12, 2145, 231, 120, 240, 3039345, 45, 2359420, 180, 1428, 4070, 1019084, 120, 53307975, 2145, 1350, 1428, 1003066152, 120, 1127619917796295, 16800, 26796, 3039345, 1104740, 72, 884004, 2359420, 1288092 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Each term gives the largest of the N-1 terms in A050210 corresponding to the fractions with denominator N.

REFERENCES

Guy, R. K. "Egyptian Fractions." section D11 in "Unsolved Problems in Number Theory", 2nd ed. New York: Springer-Verlag, pp. 158-166, 1994.

LINKS

Table of n, a(n) for n=2..39.

Robert Munafo, Largest Denominator of Greedy Egyptian Fraction Sum for M/N

Eric Weisstein's World of Mathematics, Egyptian Fractions.

EXAMPLE

Consider a(5). There are 4 fractions with 5 in the denominator: 1/5=1/5, 2/5=1/3+1/15, 3/5=1/2+1/10 and 4/5=1/2+1/4+1/20. Of these, the largest denominator is 20, so a(5)=20.

PROG

/* MACSYMA or maxima */ egypt(x) := block([i, n, d, p, e, on, od], ( n : num(x), d : n/x, on : n, od : d, p : 0, e : [], for i:1 while x>0 do ( n : num(x), d : n/x, p : fix((d+n-1)/n), x : x - 1/p, e : append(e, [p]) ), return(p) ) ); for b:2 step 1 through 100 do ( max:2, for a:2 step 1 through b-1 do ( if gcd(a, b)=1 then ( m : egypt(a/b), if m>max then max : m ) ), print("a[", b, "]=", max) ), t$

CROSSREFS

Cf. A050210, A098853.

Sequence in context: A063427 A066092 A100695 * A275121 A174824 A009262

Adjacent sequences:  A100137 A100138 A100139 * A100141 A100142 A100143

KEYWORD

nonn

AUTHOR

Robert Munafo, Nov 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 15:08 EST 2017. Contains 282390 sequences.