login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100130 Expansion of lambda * (1 - lambda) / 16 in powers of q. 2
1, -24, 300, -2624, 18126, -105504, 538296, -2471424, 10400997, -40674128, 149343012, -519045888, 1718732998, -5451292992, 16633756008, -49010118656, 139877936370, -387749049720, 1046413709980, -2754808758144, 7087483527072 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

Table of n, a(n) for n=1..21.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q / chi(q)^24 in powers of q where chi() is a Ramanujan theta function.

Expansion of (eta(q) * eta(q^4) / eta(q^2)^2)^24 in powers of q.

Euler transform of period 4 sequence [ -24, 24, -24, 0, ...].

G.f. is a Fourier series which satisfies f(-1 / (4 t)) = f(t) where q = exp(2 pi i t).

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 4096 * (u*v)^4 + (u*v)^2 * (1791 + 2352 * (u + v) - 10496 * u*v) - u*v * (1 - 48 * (u + v) + 96 * (u^2 + v^2)) + u^3 + v^3.

G.f.: x * (Product_{k>0} (1 + (-x)^k))^24 = x / (Product_{k>0} (1 + x^(2*k - 1)))^24.

a(n) = -(-1)^n * A014103(n). Convolution inverse of A097340. Series inversion of A195130.

EXAMPLE

q - 24*q^2 + 300*q^3 - 2624*q^4 + 18126*q^5 - 105504*q^6 + 538296*q^7 - 2471424*q^8 + ...

MATHEMATICA

a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m) m / 16, {q, 0, n}]]

a[ n_] := SeriesCoefficient[ x / Product[ 1 + x^k, {k, 1, n, 2}]^24, {x, 0, n}]

a[ n_] := SeriesCoefficient[ x / QPochhammer[ -x, x^2]^24, {x, 0, n}]

PROG

(PARI) {a(n) = polcoeff(x * prod(k=1, n, 1 + (-x)^k, 1 + x * O(x^n))^24, n)}

(PARI) {a(n) = local(A); if( n<1, 0,  n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) / eta(x^2 + A)^2)^24, n))}

CROSSREFS

Cf. A014103, A097340, A195130.

Sequence in context: A056285 A162686 A010976 * A014103 A206002 A000552

Adjacent sequences:  A100127 A100128 A100129 * A100131 A100132 A100133

KEYWORD

sign

AUTHOR

Michael Somos, Nov 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 17 11:28 EDT 2014. Contains 246841 sequences.