login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100130 Expansion of lambda * (1 - lambda) / 16 in powers of q. 2
1, -24, 300, -2624, 18126, -105504, 538296, -2471424, 10400997, -40674128, 149343012, -519045888, 1718732998, -5451292992, 16633756008, -49010118656, 139877936370, -387749049720, 1046413709980, -2754808758144, 7087483527072 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

Table of n, a(n) for n=1..21.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q / chi(q)^24 in powers of q where chi() is a Ramanujan theta function.

Expansion of (eta(q) * eta(q^4) / eta(q^2)^2)^24 in powers of q.

Euler transform of period 4 sequence [ -24, 24, -24, 0, ...].

G.f. is a Fourier series which satisfies f(-1 / (4 t)) = f(t) where q = exp(2 pi i t).

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 4096 * (u*v)^4 + (u*v)^2 * (1791 + 2352 * (u + v) - 10496 * u*v) - u*v * (1 - 48 * (u + v) + 96 * (u^2 + v^2)) + u^3 + v^3.

G.f.: x * (Product_{k>0} (1 + (-x)^k))^24 = x / (Product_{k>0} (1 + x^(2*k - 1)))^24.

a(n) = -(-1)^n * A014103(n). Convolution inverse of A097340. Series inversion of A195130.

EXAMPLE

q - 24*q^2 + 300*q^3 - 2624*q^4 + 18126*q^5 - 105504*q^6 + 538296*q^7 - 2471424*q^8 + ...

MATHEMATICA

a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m) m / 16, {q, 0, n}]]

a[ n_] := SeriesCoefficient[ x / Product[ 1 + x^k, {k, 1, n, 2}]^24, {x, 0, n}]

a[ n_] := SeriesCoefficient[ x / QPochhammer[ -x, x^2]^24, {x, 0, n}]

PROG

(PARI) {a(n) = polcoeff(x * prod(k=1, n, 1 + (-x)^k, 1 + x * O(x^n))^24, n)}

(PARI) {a(n) = local(A); if( n<1, 0,  n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) / eta(x^2 + A)^2)^24, n))}

CROSSREFS

Cf. A014103, A097340, A195130.

Sequence in context: A056285 A162686 A010976 * A014103 A206002 A000552

Adjacent sequences:  A100127 A100128 A100129 * A100131 A100132 A100133

KEYWORD

sign

AUTHOR

Michael Somos, Nov 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 05:04 EST 2014. Contains 252079 sequences.