This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100130 Expansion of lambda * (1 - lambda) / 16 in powers of q. 2
 1, -24, 300, -2624, 18126, -105504, 538296, -2471424, 10400997, -40674128, 149343012, -519045888, 1718732998, -5451292992, 16633756008, -49010118656, 139877936370, -387749049720, 1046413709980, -2754808758144, 7087483527072 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q / chi(q)^24 in powers of q where chi() is a Ramanujan theta function. Expansion of (eta(q) * eta(q^4) / eta(q^2)^2)^24 in powers of q. Euler transform of period 4 sequence [ -24, 24, -24, 0, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = f(t) where q = exp(2 Pi i t). G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 4096 * (u*v)^4 + (u*v)^2 * (1791 + 2352 * (u + v) - 10496 * u*v) - u*v * (1 - 48 * (u + v) + 96 * (u^2 + v^2)) + u^3 + v^3. G.f.: x * (Product_{k>0} (1 + (-x)^k))^24 = x / (Product_{k>0} (1 + x^(2*k - 1)))^24. a(n) = -(-1)^n * A014103(n). Convolution inverse of A097340. Series reversion of A195130. a(n) ~ -(-1)^n * exp(2*Pi*sqrt(2*n)) / (4096 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017 EXAMPLE G.f. = q - 24*q^2 + 300*q^3 - 2624*q^4 + 18126*q^5 - 105504*q^6 + ... MATHEMATICA a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m) m / 16, {q, 0, n}]]; a[ n_] := SeriesCoefficient[ q / Product[ 1 + q^k, {k, 1, n, 2}]^24, {q, 0, n}]; a[ n_] := SeriesCoefficient[ q / QPochhammer[ -q, q^2]^24, {q, 0, n}]; PROG (PARI) {a(n) = polcoeff( x * prod(k=1, n, 1 + (-x)^k, 1 + x * O(x^n))^24, n)}; (PARI) {a(n) = my(A); if( n<1, 0,  n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) / eta(x^2 + A)^2)^24, n))}; CROSSREFS Cf. A014103, A097340, A195130. Sequence in context: A056285 A162686 A010976 * A014103 A206002 A000552 Adjacent sequences:  A100127 A100128 A100129 * A100131 A100132 A100133 KEYWORD sign,changed AUTHOR Michael Somos, Nov 06 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 22 03:26 EST 2017. Contains 295076 sequences.