login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100125 Decimal expansion of Sum_{n>0} n/(2^(n^2)). 1
6, 3, 0, 9, 2, 0, 5, 5, 9, 2, 5, 5, 1, 8, 5, 8, 6, 4, 7, 7, 8, 3, 2, 4, 0, 0, 3, 9, 0, 7, 9, 4, 3, 3, 7, 0, 0, 9, 2, 1, 5, 1, 4, 2, 9, 9, 2, 1, 7, 8, 7, 9, 8, 6, 8, 0, 6, 4, 4, 4, 2, 4, 8, 9, 9, 9, 8, 9, 8, 0, 8, 1, 0, 7, 8, 3, 8, 1, 7, 7, 3, 4, 7, 3, 8, 8, 2, 0, 0, 1, 9, 2, 0, 6, 4, 4, 4, 5, 2, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This number is obviously 2-dense, but not 2-normal: any finite binary string s representing the value N will appear in its digits, not later than those added by the term N/2^(N^2), but nonzero digits have density zero since the gap between those added by subsequent terms is increasing much faster (~ n) than the maximal possible number of new nonzero digits (~ log_2(n)). - M. F. Hasler, Mar 22 2017

LINKS

Table of n, a(n) for n=0..99.

David H. Bailey and Richard E. Crandall, Random Generators and Normal Numbers, page 27.

EXAMPLE

0.6309205592551858647783240039079433700921514299217879868...

MATHEMATICA

RealDigits[N[Sum[n/(2^(n^2)), {n, 4!}], 100]][[1]] (* Arkadiusz Wesolowski, Sep 29 2011 *)

PROG

(PARI) default(realprecision, 100); sum(n=1, 100, n/(2^(n^2)), 0.) \\ Typo corrected. sum(n=1, 100, n*1.>>(n^2)) is 25 x faster for 1000 digits. - M. F. Hasler, Mar 22 2017

CROSSREFS

Cf. A066716: binary Champernowne constant.

Sequence in context: A206530 A333549 A191896 * A153459 A102525 A119923

Adjacent sequences:  A100122 A100123 A100124 * A100126 A100127 A100128

KEYWORD

cons,nonn

AUTHOR

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 11 2004

EXTENSIONS

Offset corrected by Arkadiusz Wesolowski, Sep 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 17:37 EDT 2020. Contains 334684 sequences. (Running on oeis4.)