%I #25 Jun 24 2017 16:23:10
%S 1,1,1,3,16,91,595
%N Number of Wilf classes in S_n.
%D Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Algeb. Combin., 15 (2002), 271-290.
%H A. M. Baxter, <a href="https://pdfs.semanticscholar.org/2c5d/79e361d3aecb25c380402144177ad7cd9dc8.pdf">Algorithms for Permutation Statistics</a>, Ph. D. Dissertation, Rutgers University, May 2011.
%H A. M. Baxter and A. D. Jaggard, <a href="http://arxiv.org/abs/1106.3653">Pattern avoidance by even permutations</a>, arXiv preprint arXiv:1106.3653, 2011
%H Zvezdelina Stankova-Frenkel and Julian West, <a href="http://arxiv.org/abs/math/0103152">A new class of Wilf-equivalent permutations, arXiv:math/0103152. See Fig. 9.
%Y Representatives for the three Wilf classes in S_4 are A005802, A022558, A061552. - _N. J. A. Sloane_, Mar 15 2015
%Y Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208. - _N. J. A. Sloane_, Mar 19 2015
%K nonn,more
%O 1,4
%A _N. J. A. Sloane_, Nov 12 2004