This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099948 Number of partitions of n such that the number of blocks is congruent to 3 mod 4. 1
 1, 6, 25, 90, 302, 994, 3487, 15210, 92489, 713988, 5979480, 50184316, 412595913, 3317961318, 26241631409, 205918294518, 1622545217510, 13045429410974, 109152638729439, 969395726250226, 9255388478615017, 94973500733767432, 1034488089509527120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 3..500 M. Klazar, Bell numbers, their relatives and algebraic differential equations, J. Combin. Theory, A 102 (2003), 63-87. FORMULA G.f.: sum(x^k/[(1-x)(1-2x)...(1-kx)], k=3 (mod 4)). - Emeric Deutsch, Dec 15 2004 EXAMPLE a(11)=92489 because stirling2(11,3)+stirling2(11,7)+stirling2(11,11)=92489. MAPLE seq(sum(stirling2(n, 3+4*k), k=0..(n-3)/4), n=3..26); # Emeric Deutsch, Dec 15 2004 # second Maple program: with(combinat): b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=3, 1, 0),      `if`(i<1, 0, add(multinomial(n, n-i*j, i\$j)/j!*       b(n-i*j, i-1, irem(m+j, 4)), j=0..n/i)))     end: a:= n-> b(n\$2, 0): seq(a(n), n=3..30);  # Alois P. Heinz, Sep 17 2015 MATHEMATICA Table[Sum[StirlingS2[n, 3+4*k], {k, 0, (n-3)/4}], {n, 3, 26}] (* Jean-François Alcover, Feb 18 2016, after Emeric Deutsch *) CROSSREFS Sequence in context: A055337 A001871 A000392 * A277973 A143815 A209241 Adjacent sequences:  A099945 A099946 A099947 * A099949 A099950 A099951 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 12 2004 EXTENSIONS More terms from Emeric Deutsch, Dec 15 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 14:07 EDT 2019. Contains 325030 sequences. (Running on oeis4.)