login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099902 Multiplies by 2 and shifts right under the XOR BINOMIAL transform (A099901). 5
1, 3, 7, 11, 23, 59, 103, 139, 279, 827, 1895, 2955, 5655, 14395, 24679, 32907, 65815, 197435, 460647, 723851, 1512983, 3881019, 6774887, 9142411, 18219287, 54002491, 123733863, 192940939, 369104407, 939538491, 1610637415, 2147516555 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Equals the XOR BINOMIAL transform of A099901. Also, equals the main diagonal of the XOR difference triangle A099900, in which the central terms of the rows form the powers of 2.

Bisection of A101624. - Paul Barry, May 10 2005

LINKS

Robert Israel, Table of n, a(n) for n = 0..3290

FORMULA

a(n) = SumXOR_{k=0..n} (C(n-k+[k/2], [k/2])mod 2)*2^k for n>=0.

a(n) = SumXOR_{i=0..n} (C(n, i)mod 2)*A099901(n-i), where SumXOR is the analog of summation under the binary XOR operation and C(i, j)mod 2 = A047999(i, j).

a(n) = Sum_{k=0..n} A047999(n-k+[k/2], [k/2]) * 2^k.

a(n)=sum{k=0..2n, (binomial(k, 2n-k) mod 2)*2^(2n-k)}; a(n)=sum{k=0..n, (binomial(2n-k, k) mod 2)*2^k}; - Paul Barry, May 10 2005

a(n)=Sum_{k, 0<=k<=2n}A106344(2n,k)*2^(2n-k). [From Philippe Deléham, Dec 18 2008]

MAPLE

a:= n -> add((binomial(n-k+floor(k/2), floor(k/2)) mod 2)*2^k, k=0..n):

map(a, [$0..100]); # Robert Israel, Jan 24 2016

PROG

(PARI) {a(n)=local(B); B=0; for(k=0, n, B=bitxor(B, binomial(n-k+k\2, k\2)%2*2^k)); B}

(PARI) a(n)=sum(k=0, n, binomial(n-k+k\2, k\2)%2*2^k)

CROSSREFS

Cf. A099884, A099900, A099901.

Sequence in context: A116606 A188132 A139814 * A316962 A092284 A024459

Adjacent sequences:  A099899 A099900 A099901 * A099903 A099904 A099905

KEYWORD

eigen,nonn

AUTHOR

Paul D. Hanna, Oct 30 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 17:51 EST 2018. Contains 318023 sequences. (Running on oeis4.)