OFFSET
0,4
COMMENTS
FORMULA
T(n, k) = SumXOR_{i=0..k} (C(k, i)mod 2)*(A003188(n-i)), where SumXOR is the analog of summation under the binary XOR operation and C(k, i)mod 2 = A047999(k, i). T(2^n, 2^n) = 3*2^(n-1) for n>0, with T(1, 1)=1 and T(k, k)=0 elsewhere.
T(n,1) = A006519(n), the lowest 1-bit of n (see formula by Franklin T. Adams-Watters in A003188). - Kevin Ryde, Jul 02 2020
EXAMPLE
Rows begin:
[0],
[1,1],
[3,2,3],
[2,1,3,0],
[6,4,5,6,6],
[7,1,5,0,6,0],
[5,2,3,6,6,0,0],
[4,1,3,0,6,0,0,0],
[12,8,9,10,10,12,12,12,12],
...
where A003188 fills the leftmost column.
PROG
(PARI) {T(n, k)=local(B); B=0; for(i=0, k, B=bitxor(B, binomial(k, i)%2*(bitxor((n-i), (n-i)\2)))); B}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 29 2004
STATUS
approved