login
Smallest perimeter S such that exactly n distinct Pythagorean triangles with this perimeter can be constructed.
3

%I #18 Feb 07 2020 15:09:59

%S 12,60,120,240,420,720,1320,840,2640,1680,3360,2520,4620,7920,7560,

%T 5040,10080,17160,10920,9240,40320,25200,28560,21840,18480,60480,

%U 41580,46200,36960,32760,27720,78540,60060,129360,134640,115920,85680,65520,83160

%N Smallest perimeter S such that exactly n distinct Pythagorean triangles with this perimeter can be constructed.

%C Least perimeter common to exactly n distinct Pythagorean triangles. - _Lekraj Beedassy_, Jun 07 2006

%H Ray Chandler, <a href="/A099830/b099830.txt">Table of n, a(n) for n = 1..163</a>

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple.</a>

%H <a href="/index/Ps#PyTrip">Index entries related to Pythagorean Triples.</a>

%e a(7)=1320 because 1320 is the smallest possible perimeter for which exactly 7 different Pythgorean triangles exist: 1320 = 110+600+610 = 120+594+606 = 220+528+572 = 231+520+569 = 264+495+561 = 330+440+550 = 352+420+548.

%Y Cf. A099829 first perimeter producing at least n Pythagorean triangles, A009096 ordered perimeters of Pythagorean triangles, A001399, A069905 partitions into 3 parts.

%K nonn

%O 1,1

%A _Hugo Pfoertner_, Oct 27 2004

%E More terms from _Ray Chandler_, Oct 29 2004