login
Smallest perimeter S such that at least n distinct Pythagorean triangles with this perimeter can be constructed.
3

%I #12 Feb 07 2020 15:05:09

%S 12,60,120,240,420,720,840,840,1680,1680,2520,2520,4620,5040,5040,

%T 5040,9240,9240,9240,9240,18480,18480,18480,18480,18480,27720,27720,

%U 27720,27720,27720,27720,55440,55440,55440,55440,55440,55440,55440,55440

%N Smallest perimeter S such that at least n distinct Pythagorean triangles with this perimeter can be constructed.

%H Ray Chandler, <a href="/A099829/b099829.txt">Table of n, a(n) for n = 1..279</a>

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple.</a>

%H <a href="/index/Ps#PyTrip">Index entries related to Pythagorean Triples.</a>

%e a(3)=120 because 120 is the smallest possible perimeter for which 3 different Pythgorean triangles exist: 120=20+48+52=24+45+51=30+40+50.

%Y Cf. A099830 first perimeter with exact match of number of Pythagorean triangles, A009096 ordered perimeters of Pythagorean triangles.

%K nonn

%O 1,1

%A _Hugo Pfoertner_, Oct 27 2004

%E More terms from _Ray Chandler_, Oct 29 2004