login
A099799
a(n) = least integer that begins a run of exactly n consecutive integers that can be the hypotenuse of a Pythagorean triangle.
2
5, 25, 39, 50, 218, 775, 949, 673, 403, 1597, 2190, 2820, 6050, 8577, 12423, 27325, 34075, 52754, 37088, 74649, 68150, 43795, 106368, 102227, 225809, 149297, 87594, 694398, 820953, 575377, 741617, 776230, 169160, 2218014
OFFSET
1,1
COMMENTS
a(74) = 739405953; for n > 64, all other terms > 10^9. - Frank A. Stevenson, Jan 07 2024
LINKS
Frank A. Stevenson, Table of n, a(n) for n = 1..64
Albert H. Beiler, Review of Consecutive Hypotenuses of Pythagorean Triangles by Daniel Shanks, Mathematics of Computation, Vol. 22, No. 103, (July 1968), pp. 690-692.
MATHEMATICA
lmt = 5*10^6; hyp = {5}; Do[ mn = m^2 + n^2; hyp = Join[hyp, Table[k*mn, {k, Floor[lmt/mn]}]]; hyp = Union[hyp], {n, 2, Floor[ Sqrt[lmt]]}, {m, Min[n - 1, Floor[ Sqrt[ lmt - n^2]]]}]; f[n_] := Block[{k = 1}, While[ phk[[k]] + n - 1 != phk[[k + n - 1]], k++ ]; phk[[k]]]; Do[ Print[ f[n]], {n, 34}
CROSSREFS
Sequence in context: A018724 A070389 A098993 * A093534 A070388 A250314
KEYWORD
nonn,more
AUTHOR
STATUS
approved