login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099774 Number of divisors of 2*n-1. 30
1, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 6, 2, 3, 4, 2, 4, 4, 2, 2, 6, 4, 2, 4, 2, 2, 6, 4, 2, 5, 2, 4, 4, 2, 4, 4, 4, 2, 6, 2, 2, 8, 2, 2, 4, 2, 4, 6, 4, 3, 4, 4, 2, 4, 2, 4, 8, 2, 2, 4, 4, 4, 6, 2, 2, 6, 4, 2, 4, 4, 2, 8, 2, 3, 6, 2, 6, 4, 2, 2, 4, 4, 4, 8, 2, 2, 8, 2, 2, 4, 4, 4, 6, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

FORMULA

G.f.: Sum_{k>0} x^k/(1-x^(2*k-1)). - Michael Somos, Sep 02 2006

G.f.: sum(k>=1, x^((2*k-1)^2/2+1/2) * (1+x^(2*k-1))/(1-x^(2*k-1)) ). - Joerg Arndt, Nov 08 2010

Dirichlet g.f. (with interpolated zeros): zeta(s)^2*(1-1/2^s)^2. - Geoffrey Critzer, Feb 15 2015

EXAMPLE

a(5)=3 because the divisors of 9 are: 1, 3 and 9.

MAPLE

with(numtheory): seq(tau(2*n-1), n=1..120);

MATHEMATICA

nn = 200;

f[list_, i_] := list[[i]]; a =Table[Boole[OddQ[n]], {n, 1, nn}]; Select[Table[DirichletConvolve[f[a, n], f[a, n], n, m], {m, 1, nn}], # > 0 &] (* Geoffrey Critzer, Feb 15 2015 *)

Table[DivisorSigma[0, 2*n-1], {n, 1, 100}] (* Vaclav Kotesovec, Jan 14 2019 *)

PROG

(PARI) {a(n)=if(n<1, 0, numdiv(2*n-1))} /* Michael Somos, Sep 03 2006 */

(Haskell)

a099774 = a000005 . a005408  -- Reinhard Zumkeller, Sep 22 2014

(MAGMA) [NumberOfDivisors(2*n+1): n in [0..100]]; // Vincenzo Librandi, Mar 18 2015

(GAP) List([1..120], n->Tau(2*n-1)); # Muniru A Asiru, Dec 21 2018

CROSSREFS

Bisection of A000005.

Cf. A000005, A099777.

Cf. A005408, A008438.

Sequence in context: A176775 A175778 A226182 * A305973 A290978 A142240

Adjacent sequences:  A099771 A099772 A099773 * A099775 A099776 A099777

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 19 2004

EXTENSIONS

More terms from Emeric Deutsch, Dec 03 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 10:12 EDT 2019. Contains 324375 sequences. (Running on oeis4.)