|
|
A099766
|
|
Triangle read by rows: T(n,k) = number of unbordered binary words of length n and weight k, n >= 0, 0 <= k <= n.
|
|
1
|
|
|
1, 1, 1, 0, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 2, 4, 4, 2, 0, 0, 2, 4, 8, 4, 2, 0, 0, 2, 6, 12, 12, 6, 2, 0, 0, 2, 6, 18, 22, 18, 6, 2, 0, 0, 2, 8, 24, 40, 40, 24, 8, 2, 0, 0, 2, 8, 32, 60, 80, 60, 32, 8, 2, 0, 0, 2, 10, 40, 92, 140, 140, 92, 40, 10, 2, 0, 0, 2, 10, 50, 128, 232
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
Table of n, a(n) for n=0..83.
T. Harju and D. Nowotka, Counting bordered and primitive words with a fixed weight, TUCS Technical Report, No 630, Turku, November 2004. [This is the triangle U(n,k).]
T. Harju and D. Nowotka, Counting bordered and primitive words with a fixed weight, Theoret. Comput. Sci. 340 (2005), no. 2, 273-279. [This is the triangle U(n,k).]
|
|
FORMULA
|
See Maple code.
|
|
EXAMPLE
|
Triangle begins:
.1
.1,1
.0,2,0
.0,2,2,0
.0,2,2,2,0
.0,2,4,4,2,0
.0,2,4,8,4,2,0
|
|
MAPLE
|
U:=proc(n, k) option remember; if n < 1 then RETURN(0); fi; if n = 1 then RETURN(1); fi; if n > 1 and k = 0 then RETURN(0); fi; if k > 1 and k >= n then RETURN(0); fi; U(n-1, k)+U(n-1, k-1)-E(n, k); end;
E:=proc(n, k) option remember; if n mod 2 = 0 and k mod 2 = 0 then U(n/2, k/2) else 0; fi; end;
|
|
CROSSREFS
|
Row sums give A003000. Cf. A099768, A102416.
Sequence in context: A216218 A122071 A326915 * A194947 A132339 A333941
Adjacent sequences: A099763 A099764 A099765 * A099767 A099768 A099769
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
N. J. A. Sloane, Nov 11 2004
|
|
STATUS
|
approved
|
|
|
|