OFFSET
0,1
COMMENTS
Let b(0)=1, b(n) = A005578(n-1) = {1,1,2,3,6,11,22,43,86,171,342, ...} then a(n) = Sum_{k=0..n+1} C(n+1,k)*b(k).
Binomial transform of A135351. - R. J. Mathar, Aug 05 2009
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Yilmaz Simsek, New families of special numbers for computing negative order Euler numbers, arXiv:1604.05601 [math.NT], 2016.
Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
FORMULA
a(n) = (3^n + 2^(n+1) + 1)/2.
G.f.: (2-8*x+7*x^2)/((1-x)*(1-2*x)*(1-3*x)). - Jaume Oliver Lafont, Mar 06 2009
E.g.f.: (exp(x) + 2*exp(2*x) + exp(3*x))/2. - G. C. Greubel, Sep 03 2019
EXAMPLE
a(6) = (3^6+1)/2 + 2^6 = 365+64 = 429.
a(6) = 1 + 7*1 + 21*1 + 35*2 + 35*3 + 21*6 + 7*11 + 1*22 = 429.
MAPLE
seq((3^n +2^(n+1) +1)/2, n=0..30); # G. C. Greubel, Sep 03 2019
MATHEMATICA
Table[(3^n +2^(n+1) +1)/2, {n, 0, 30}] (* G. C. Greubel, Sep 03 2019 *)
LinearRecurrence[{6, -11, 6}, {2, 4, 9}, 30] (* Harvey P. Dale, May 23 2021 *)
PROG
(PARI) a(n) = (3^n+1)/2 + 2^n; \\ Michel Marcus, Aug 15 2013
(Magma) [(3^n +2^(n+1) +1)/2: n in [0..30]]; // G. C. Greubel, Sep 03 2019
(Sage) [(3^n +2^(n+1) +1)/2 for n in (0..30)] # G. C. Greubel, Sep 03 2019
(GAP) List([0..30], n-> (3^n +2^(n+1) +1)/2); # G. C. Greubel, Sep 03 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof, Nov 11 2004
EXTENSIONS
Corrected and extended by T. D. Noe, Nov 07 2006
STATUS
approved