%I #7 Oct 04 2012 10:28:53
%S 1,2,21,225,3328,33518,257909,1544907,7657779,32454761,121100938,
%T 405911691,1242567609,3517715389,9305703095,23194232130,54848107788,
%U 123760738779,267768667311,557808040826,1122804257019,2190539008704,4153269969884,7670791137960
%N Molien series for complete weight enumerators of Euclidean self-dual codes over the Galois ring GR(4,2) that contain the all-ones vector.
%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H <a href="/index/Mo#Molien">Index entries for Molien series</a>
%F G.f.: u1/u2 where u1 := f(t^4) + t^156*f(t^-4), u2 := (1-t^4)^2*(1-t^8)^5*(1-t^12)^5*(1-t^16)^4 and
%F f(t) = 1 + 13*t^2 + 180*t^3 + 2815*t^4 + 26097*t^5 + 178909*t^6 + 914207*t^7 + 3741734*t^8 + 12638167*t^9 + 36300248*t^10 + 90284593*t^11 + 197531731*t^12 + 384302984*t^13 + 670899605*t^14 +
%F 1057839714*t^15 + 1514398168*t^16 + 1975782327*t^17 + 2355691682*t^18 + 2571102793*t^19.
%K nonn
%O 0,2
%A G. Nebe (nebe(AT)math.rwth-aachen.de), Nov 10, 2004